Databricks Feature Store 0.8

Documentation > FeatureStore 0.8.0 documentation

Databricks Feature Store

Python API

Databricks FeatureStoreClient

class databricks.feature_store.client.FeatureStoreClient(feature_store_uri: Optional[str] = None, model_registry_uri: Optional[str] = None)

Bases: object

Client for interacting with the Databricks Feature Store.

create_table(name: str, primary_keys: Union[str, List[str]], df: Optional[pyspark.sql.dataframe.DataFrame] = None, *, timestamp_keys: Union[str, List[str], None] = None, partition_columns:
Union[str, List[str], None] = None, schema: Optional[pyspark.sql.types.StructType] = None, description: Optional[str] = None, tags: Optional[Dict[str, str]] = None, **kwargs) —
databricks.feature_store.entities.feature_table.FeatureTable

Create and return a feature table with the given name and primary keys.

The returned feature table has the given name and primary keys. Uses the provided schema or the inferred schema of the provided df. If af is provided, this data will be saved in a
Delta table. Supported data types for features are: IntegerType, LongType, FloatType, DoubleType, StringType, BooleanType, DateType, TimestampType, ShortType,
ArrayType, MapType, and BinaryType, and DecimalType.

Parameters: ® name - Afeature table name of the form <database_name>.<table_name>, for example dev.user_features.

primary_keys - The feature table’s primary keys. If multiple columns are required, specify a list of column names, for example ['customer_id', 'region'].
df - Data to insert into this feature table. The schema of d£ will be used as the feature table schema.
timestamp_keys -

Columns containing the event time associated with feature value. Timestamp keys and primary keys of the feature table uniquely identify the feature value for an entity at a point
intime.

Note

Experimental: This argument may change or be removed in a future release without warning.

partition_columns -
Columns used to partition the feature table. If a list is provided, column ordering in the list will be used for partitioning.

Note

When choosing partition columns for your feature table, use columns that do not have a high cardinality. An ideal strategy would be such that you expect data in each partition
to be at least 1 GB. The most commonly used partition column is a date.

Additional info: Choosing the right partition columns for Delta tables

schema - Feature table schema. Either schema or df must be provided.

description - Description of the feature table.
* tags-
Tags to associate with the feature table.

Note

Available in version >=0.4.1.

Other Parameters:

* path (optional[str])- Path inasupported filesystem. Defaults to the database location.

register_table(* delta_table: str, primary_keys: Union[str, List[str]], timestamp_keys: Union[str, List[str], None] = None, description: Optional[str] = None, tags: Optional[Dict[str, str]] = None)
— databricks.feature_store.entities.feature_table.FeatureTable

Register an existing Delta table as a feature table with the given primary keys.
The returned feature table has the same name as the Delta table.
Note

Available in version >=0.3.8.

https://docs.python.org/3/library/functions.html#object
https://bit.ly/3ueXsjv

Parameters: * name - A Delta table name of the form <database_name>.<table_name>, for example dev.user_features. The table must exist in the metastore.

primary_keys - The Delta table’s primary keys. If multiple columns are required, specify a list of column names, for example ['customer_id', 'region'].

timestamp_keys - Columns containing the event time associated with feature value. Together, the timestamp keys and primary keys uniquely identify the feature value at a point
intime.

description - Description of the feature table.
* tags-
Tags to associate with the feature table.

Note

Available in version >=0.4.1.

Returns: A FeatureTable object.

get_table(name: str) — databricks.feature_store.entities.feature_table.FeatureTable

Get a feature table’s metadata.

Parameters: name - A feature table name of the form <database_name>.<table_name>, for example dev.user_features.

drop_table(name: str) — None
Note

Experimental: This method may change or be removed in a future release without warning.

Delete the specified feature table. This APl also drops the underlying Delta table.
Note

Available in version >=0.4.1.

Parameters: name - The feature table name of the form <database_name>.<table_name>, for example dev.user_features.
Note

Deleting a feature table can lead to unexpected failures in upstream producers and downstream consumers (models, endpoints, and scheduled jobs). You must delete any existing
published online stores separately.

read_table(name: str, **kwargs) — pyspark.sql.dataframe.DataFrame
Read the contents of a feature table.

Parameters: name - A feature table name of the form <database_name>.<table_name>, for example dev.user_features.

Returns: The feature table contents, or an exception will be raised if this feature table does not exist.

write_table(name: str, df: pyspark.sql.dataframe.DataFrame, mode: str = 'merge’, checkpoint_location: Optional[str] = None, trigger: Dict[str, Any] = {'processingTime': '5 seconds'}) —
Optional[pyspark.sql.streaming.StreamingQuery]
Writes to a feature table.

If the input DataFrame is streaming, will create a write stream.

Parameters: * name - A feature table name of the form <database_name>.<table_name>, for example dev.user_features. Raises an exception if this feature table does not exist.

df - Spark pataFrame with feature data. Raises an exception if the schema does not match that of the feature table.

mode -
Two supported write modes:

o "overwrite" updatesthe whole table.

o "merge" will upsert the rows in df into the feature table. If df contains columns not present in the feature table, these columns will be added as new features.

checkpoint_location - Sets the Structured Streaming checkpointLocation option. By setting a checkpoint_location, Spark Structured Streaming will store progress
information and intermediate state, enabling recovery after failures. This parameter is only supported when the argument df is a streaming pataFrame.

trigger - If af . isStreaming, trigger defines the timing of stream data processing, the dictionary will be unpacked and passed to patastreamwriter.trigger as

arguments. For example, trigger={'once': True} willresultinacall to DataStreamWriter.trigger (once=True).

Returns: If df.isStreaming, returns a PySpark streamingQuery. None otherwise.

add_data_sources(* feature_table_name: str, source_names: Union[str, List[str]], source_type: str = 'custom’) — None

Note

Experimental: This method may change or be removed in a future release without warning.

Add data sources to the feature table.

Parameters: feature_table_name - The feature table name.

source_names - Data source names. For multiple sources, specify a list. If a data source name already exists, it is ignored.
source_type -
One of the following:

o "table":Tablein format <database_name>.<table_name>and is stored in the metastore (eg Hive).
o "path":Path, egin the Databricks File System (DBFS).

o "custom":Manually added data source, neither a table nor a path.

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.DataStreamWriter.trigger
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.StreamingQuery
https://docs.python.org/3/library/constants.html#None

delete_data_sources(” feature_table_name: str, source_names: Union[str, List[str]]) — None
Note

Experimental: This method may change or be removed in a future release without warning.

Delete data sources from the feature table.
Note

Data sources of all types (table, path, custom) that match the source names will be deleted.

Parameters: * feature_table_name - The feature table name.
* source_names - Data source names. For multiple sources, specify a list. If a data source name does not exist, it is ignored.

publish_table(name: str, online_store: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec, *, filter_condition: Optional[str] = None, mode: str = 'merge streaming:
bool = False, checkpoint_location: Optional[str] = None, trigger: Dict[str, Any] = {'processingTime': '5 minutes'}, features: Union([str, List[str], None] = None) —
Optional[pyspark.sql.streaming.StreamingQuery]

Publish a feature table to an online store.

Parameters: * name - Name of the feature table.
online_store - Specification of the online store.

filter_condition - A SQL expression using feature table columns that filters feature rows prior to publishing to the online store. For example, "dt > '2020-09-10"".Thisis
analogous to running df . filter ora WHERE condition in SQL on a feature table prior to publishing.
* mode -
Specifies the behavior when data already exists in this feature table in the online store. If "overwrite" mode is used, existing data is replaced by the new data. If "merge" mode
is used, the new data will be merged in, under these conditions:

o Ifakey exists in the online table but not the offline table, the row in the online table is unmodified.

o If a key exists in the offline table but not the online table, the offline table row is inserted into the online table.

o Ifakey exists in both the offline and the online tables, the online table row will be updated.

streaming - If True, streams data to the online store.

checkpoint_location - Sets the Structured Streaming checkpointLocation option. By settinga checkpoint_location, Spark Structured Streaming will store progress

information and intermediate state, enabling recovery after failures. This parameter is only supported when streaming=True.

trigger - If streaming=True, trigger defines the timing of stream data processing. The dictionary will be unpacked and passed to patastreamWriter.trigger as

arguments. For example, trigger={'once': True} willresultina call to DataStreamWriter.trigger (once=True).

features -
Specifies the feature column(s) to be published to the online store. The selected features must be a superset of existing online store features. Primary key columns and timestamp
key columns will always be published.

Note

This parameter is only supported when mode="merge" . When features is not set, the whole feature table will be published.

Returns: If streaming=True, returns a PySpark streamingQuery, None otherwise.

create_training_set(df: pyspark.sql.dataframe.DataFrame, feature_lookups: List[databricks.feature_store.entities.feature_lookup.FeatureLookup], label: Union[str, List[str], None],
exclude_columns: Optional[List[str]] = None) — databricks.feature_store.training_set.TrainingSet

Create a TrainingSet.

Parameters: * df-The pataFrame used to join features into.
o feature_lookups - List of features to join into the pataFrame.
¢ label - Names of column(s) in pataFrame that contain training set labels. To create a training set without a label field, i.e. for unsupervised training set, specify label = None.

¢ exclude_columns - Names of the columns to drop from the TrainingSet DataFrame.

Returns: A TrainingSet object.

log_model(model: Any, artifact_path: str, *, flavor: module, training_set: Optional[databricks.feature_store.training_set.TrainingSet] = None, registered_model_name: Optional[str] = None,
await_registration_for: int = 300, **kwargs)

Log an MLflow model packaged with feature lookup information.
Note

The pataFrame returned by TrainingSet.load_df () must be used to train the model. If it has been modified (for example data normalization, add a column, and similar),
these modifications will not be applied at inference time, leading to training-serving skew.

Parameters: * model - Model to be saved. This model must be capable of being saved by flavor.save_model. See the MLflow Model API.

artifact_path - Run-relative artifact path.

flavor - MLflow module to use to log the model. £1avor should have type ModuleType. The module must have a method save_model, and must support the

python_function flavor. For example, m1flow.sklearn, mlflow.xgboost,and similar.

training_set - The Trainingset used to train this model.

registered_model_name -

Note

Experimental: This argument may change or be removed in a future release without warning.

If given, create a model version under registered_model_name, also creating a registered model if one with the given name does not exist.

await_registration_for - Number of seconds to wait for the model version to finish being created and is in READY status. By default, the function waits for five minutes. Specify 0

or None to skip waiting.

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.DataStreamWriter.trigger
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.StreamingQuery
https://docs.python.org/3/library/constants.html#None
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://bit.ly/3yzl1r0
https://docs.python.org/3/library/types.html#types.ModuleType
https://mlflow.org/docs/latest/python_api/mlflow.sklearn.html#module-mlflow.sklearn
https://mlflow.org/docs/latest/python_api/mlflow.xgboost.html#module-mlflow.xgboost
https://docs.python.org/3/library/constants.html#None

Returns: None

score_batch(model_uri: str, df: pyspark.sql.dataframe.DataFrame, result_type: str = 'double’) — pyspark.sql.dataframe.DataFrame
Evaluate the model on the provided pataFrame.
Additional features required for model evaluation will be automatically retrieved from Feature Store.

The model must have been logged with FeaturestorecClient.log_model (), which packages the model with feature metadata. Unless presentin daf, these features will be looked
up from Feature Store and joined with a£ prior to scoring the model.

If a feature is included in df, the provided feature values will be used rather than those stored in Feature Store.

For example, if a model is trained on two features account_creation_date and num_lifetime_purchases,asin:

feature_lookups = [
FeatureLookup(

table_name = 'trust_and_safety.customer_features',
feature_name = 'account_creation_date',
lookup_key = 'customer_id',

).
FeatureLookup (

table_name = 'trust_and_safety.customer_features',
feature_name = 'num_lifetime_purchases',
lookup_key = 'customer_id’

).

with mlflow.start_run():
training_set = fs.create_training_set(

df,

feature_lookups = feature_lookups,
label = 'is_banned',
exclude_columns = ['customer_id"']

fs.log_model(
model,
"model",
flavor=milflow.sklearn,
training_set=training_set,
registered_model_name="example_model"

Then at inference time, the caller of FeaturestoreClient.score_batch() must passa DataFrame thatincludes customer_id, the lookup_key specified in the
FeatureLookups of the training_set.|f the DataFrame contains a column account_creation_date, the values of this column will be used in lieu of those in
Feature Store.Asin:

batch_df has columns ['customer_id', 'account_creation_date']
predictions = fs.score_batch(

‘models:/example_model/1",

batch_df

Parameters: ¢ model_uri-
The location, in URI format, of the MLflow model logged using FeaturestoreClient.log_model().One of:

© runs:/<mlflow_run_id>/run-relative/path/to/model
© models:/<model_name>/<model_version>
© models:/<model_name>/<stage>

For more information about URI schemes, see Referencing Artifacts.

o df-
The pataFrame to score the model on. Feature store features will be joined with d£ prior to scoring the model. df must:

1. Contain columns for lookup keys required to join feature data from Feature Store, as specified in the feature_spec.yaml artifact.
2. Contain columns for all source keys required to score the model, as specified in the feature_spec.yaml artifact.

3. Not contain a column prediction, which is reserved for the model’s predictions. df may contain additional columns.

¢ result_type - The return type of the model. See m1flow.pyfunc.spark_udf () result_type.

Returns: A DataFrame containing:

1. All columns of af.
2. All feature values retrieved from Feature Store.

3. Acolumn prediction containing the output of the model.

set_feature_table_tag(* table_name: str, key: str, value: str) — None
Create or update a tag associated with the feature table. If the tag with the corresponding key already exists, its value will be overwritten with the new value.
Note

Available in version >=0.4.1.

https://docs.python.org/3/library/constants.html#None
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://bit.ly/3wnrseE
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.spark_udf
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Parameters:

¢ table_name - the feature table name
* key-tagkey
¢ value - tag value

delete_feature_table_tag(* table_name: str, key: str) — None

Delete the tag associated with the feature table. Deleting a non-existent tag will emit a warning.

Note

Available in version >=0.4.1.

Parameters:

* table_name - the feature table name.
¢ key - the tag key to delete.

Feature Lookup

class databricks.feature_store.entities.feature_lookup.FeatureLookup(table name: str, lookup_key: Union[str, List[str]], *, feature_names: Union[str, List[str], None] = None,
rename_outputs: Optional[Dict[str, str]] = None, timestamp_lookup_key: Union[str, List[str], None] = None, **kwargs)

Bases: databricks.feature_store.entities._feature_store_object._FeatureStoreObject

Value class used to specify a feature to use in a Trainingset.

Parameters: *

table_name - Feature table name.

lookup_key - Key to use when joining this feature table with the pataFrame passed to FeatureStoreClient.create_training_set().The lookup_key must be the columns
in the DataFrame passed to FeatureStoreClient.create_training_set().The type of lookup_key columns in that DataFrame must match the type of the primary key of the
feature table referenced in this FeatureLookup.

feature_names - A single feature name, a list of feature names, or None to lookup all features (excluding primary keys) in the feature table at the time that the training set is created. If
your model requires primary keys as features, you can declare them as independent FeatureLookups.

rename_outputs - If provided, renames features in the TrainingSet returned by of FeatureStoreClient.create_training_set.

timestamp_lookup_key -

Key to use when performing point-in-time lookup on this feature table with the pataFrame passed to FeatureStoreClient.create_training_set().The
timestamp_lookup_key must be the columnsin the DataFrame passed to FeatureStoreClient.create_training_set().Thetype of timestamp_lookup_key columnsin
that DataFrame must match the type of the timestamp key of the feature table referenced in this FeatureLookup.

Note

Experimental: This argument may change or be removed in a future release without warning.

feature_name - Feature name. Deprecated as of version 0.3.4. Use feature_names.

output_name - If provided, rename this feature in the output of FeatureStoreClient.create_training_set.Deprecated as of version 0.3.4 . Use rename_outputs.

__init__(table_name: str, lookup_key: Union[str, List[str]], *, feature_names: Union[str, List[str], None] = None, rename_outputs: Optional[Dict[str, str]] = None, timestamp_lookup_key: Union/[str,
List[str], None] = None, **kwargs)

Initialize a FeatureLookup object.

table_name

The table name to use in this FeatureLookup.

lookup_key

The lookup key(s) to use in this FeatureLookup.

feature_name

The feature name to use in this FeatureLookup. Deprecated as of version 0.3.4. Use feature_names.

output_name

The output name to use in this FeatureLookup. Deprecated as of version 0.3.4. Use feature_ names.

Training Set

class databricks.feature_store.training_set.TrainingSet(feature_spec: databricks.feature_store.entities.feature_spec.FeatureSpec, df: pyspark.sql.dataframe.DataFrame, labels:
List[str], feature_table_metadata_map: Dict[str, databricks.feature_store.entities.feature_table.FeatureTable], feature_table_data_map: Dict[str, pyspark.sql.dataframe.DataFrame])

Bases: object

Class that defines Trainingset objects.

Note

The TrainingSet constructor should not be called directly. Instead, call FeaturestoreClient.create_training_set.

load_d£() — pyspark.sql.dataframe.DataFrame

Load a pataFrame.

Return a pataFrame for training.

The returned pataFrame has columns specified in the feature_spec and labels parameters provided in FeatureStoreClient.create_training_set.

Returns:

A pataFrame for training

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://docs.python.org/3/library/functions.html#object
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Feature Table

Classes

class databricks.feature_store.entities.feature_table.FeatureTable(name, table_id, description, primary_keys, partition_columns, features creation_timestamp=None,

online_stores=None, notebook_producers=None, job_producers=None, table_data_sourc

Value class describing one feature table.

This will typically not be instantiated directly, instead the FeatureStoreClient.create_table will create FeatureTable objects.

Online Store Spec

, path_data_sourc

None)

, custom_data_sourc

, til _key

s

5)

class databricks.feature_store.online_store_spec.AmazonRdsMySqlSpec(hostname: str, port: int, user: Optional[str] = None, p.

d: Optional[str] = None, d:

Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None)

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

Class that defines and creates AmazonRdsMySqlSpec objects.

This onlinestorespec implementation is intended for publishing features to Amazon RDS MySQL and Aurora (MySQL-compatible edition).

See onlineStorespec documentation for more usage information, including parameter descriptions.

Parameters: ¢ hostname - Hostname to access online store.

port - Port number to access online store.

database_name - Database name.

table_name - Table name.

read_secret_prefix - Prefix for read secret.

write_secret_prefix - Prefix for write secret.

hostname

Hostname to access the online store.

port

Port number to access the online store.

database_name

Database name.

cloud

Define the cloud propert for the data store.

store_type

Define the data store type property.

auth_type()

Publish Auth type.

driver_name - Name of custom JDBC driver to access the online store.

user - Username that has access to the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

password - Password to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

>_name:

class databricks.feature_store.online_store_spec.AzureMySqlSpec(hostname: str, port: int, user: Optional[str] = None, p

d: Optional[str] = None, d:

= None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None)

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

Define the AzureMySqlSpec class.

This onlinestorespec implementation is intended for publishing features to Azure Database for MySQL.

See onlineStorespec documentation for more usage information, including parameter descriptions.

Parameters: ¢ hostname - Hostname to access online store.

port - Port number to access online store.

database_name - Database name.

table_name - Table name.

read_secret_prefix - Prefix for read secret.

write_secret_prefix - Prefix for write secret.

hostname

Hostname to access the online store.

port

Port number to access the online store.

database_name

Database name.

driver_name - Name of custom JDBC driver to access the online store.

user - Username that has access to the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

password - Password to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

>_name: Optional[str]

cloud

Define the cloud the fature store runs.

store_type

Define the data store type.

auth_type()

Publish Auth type.

class databricks.feature_store.online_store_spec.AzureSqlServerSpec(hostname: str, port: int, user: Optional[str] = None, p. d: Optional[str] = None,
Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None)

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec
This onlinestorespec implementation is intended for publishing features to Azure SQL Database (SQL Server).
The spec supports SQL Server 2019 and newer.

See onlineStorespec documentation for more usage information, including parameter descriptions.

Parameters: ¢ hostname - Hostname to access online store.

port - Port number to access online store.

user - Username that has access to the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

password - Password to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

database_name - Database name.

table_name - Table name.

driver_name - Name of custom JDBC driver to access the online store.

read_secret_prefix - Prefix for read secret.

write_secret_prefix - Prefix for write secret.

hostname

Hostname to access the online store.

port

Port number to access the online store.

database_name

Database name.

cloud

Define the cloud the fature store runs.

store_type

Define the data store type.

auth_type()

Publish Auth type.

>_name:

class databricks.feature_store.online_store_spec.AmazonDynamoDBSpec(* region: Optional[str], access_key_id: Optional[str] = None, secret_access_key: Optional[str] = None,

session_token: Optional[str] = None, table_name: Optional[str] = None, read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None, ttl: Optional[datetime.timedelta] = None)

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

This onlinestorespec implementation is intended for publishing features to Amazon DynamoDB.

If table_name is not provided, FeatureStoreClient.publish_table will use the offline store’s database and table name combined as the online table name.

To use a different table name in the online store, provide a value for the table_name argument.

The expected read or write secrets for DynamoDB for a given {prefix} stringare ${prefix}-access-key-id, ${prefix}-secret-access-key, and

${prefix}-session-token.

If none of the access_key_id, secret_access_key, and write_secret_prefix are passed, the instance profile attached to the cluster will be used to write to DynamoDB.

Note
AmazonDynamoDBSpec is available in version >=0.3.8.

Instance profile based writes are available in version >=0.4.1.

Parameters: ® region - Region to access online store.

access_key_id - Access key ID that has access to the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

secret_access_key - Secret access key to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

session_token - Session token to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

table_name - Table name.

read_secret_prefix - Prefix for read secret.

write_secret_prefix - Prefix for write secret.

table, FeatureStoreClient.publish_table () will publish a window of data instead of the latest snapshot.

access_key_id

Warning

ttl - The time to live for data published to the online store. This attribute is only applicable when publishing time series feature tables. If the time to live is specified for a time series

databricks.feature_store.online_store_spec.amazon_dynamodb_online_store_spec.AmazonDynamoDBSpec.access_key_id is deprecated since v0.6.0. This

method will be removed in a future release. Use write_secret_prefix instead.

Access key ID that has access to the online store. Property will be empty if write_secret_prefix or the instance profile attached to the cluster are intended to be used.

secret_access_key
Warning

databricks.feature_store.online_store_spec.amazon_dynamodb_online_store_spec.AmazonDynamoDBSpec.secret_access_key is deprecated since v0.6.0.
This method will be removed in a future release. Use write_secret_prefix instead.

Secret access key to access the online store. Property will be empty if write_secret_prefix or the instance profile attached to the cluster are intended to be used.

session_token
Warning

databricks.feature_store.online_store_spec.amazon_dynamodb_online_store_spec.AmazonDynamoDBSpec.session_token is deprecated since v0.6.0. This

method will be removed in a future release. Use write_secret_prefix instead.

Session token to access the online store. Property will be empty if write_secret_prefix or the instance profile attached to the cluster are intended to be used.

cloud

Define the cloud property for the data store.

store_type

Define the data store type.

region

Region to access the online store.

ttl

Time to live attribute for the online store.

auth_type()

Publish Auth type.

class databricks.feature_store.online_store_spec.AzureCosmosDBSpec(”, account_uri: str, database_name: Optional[str] = None, c iner_name: Optional[str] = None,

read_secret_prefix: Optional[str] = None, write_secret_prefix: str)

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec
This onlinestoreSpec implementation is intended for publishing features to Azure Cosmos DB.

If database_name and container_name are not provided, FeatureStoreClient.publish_table will use the offline store’s database and table name as the Cosmos DB database
and container name.

The expected read or write secret for Cosmos DB for a given {prefix} stringis ${prefix}-authorization-key.
The authorization key can be either the Cosmos DB account primary or secondary key.
Note

Available in version >=0.5.0.

Parameters: account_uri - URI of the Cosmos DB account.

database_name - Database name.

container_name - Container name.

read_secret_prefix - Prefix for read secret.

write_secret_prefix - Prefix for write secret.

account_uri

Account URI of the online store.

database_name

Database name.

container_name

Container name.

cloud

Define the cloud property for the data store.

store_type

Define the data store type.

auth_type()

Publish Auth type.

class databricks.feature_store.online_store_spec.OnlineStoreSpec(_type, hostname: [<class 'str'>, None] = None, port: [<class 'int'>, None] = None, user: Optional[str] = None,
password: Optional[str] = None, database_name: Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix: Optional[str] = None,
write_secret_prefix: Optional[str] = None, _internal_properties: Optional[Dict/[str, str]] = None)

Bases: abc.ABC

Parent class for all types of onlinestorespec objects.

Abstract base class for classes that specify the online store to publish to.

If database_name and table_name are not provided, FeatureStoreClient.publish_table will use the offline store’s database and table names.

To use a different database and table name in the online store, provide values for both database_name and table_name arguments.

The JDBC driver can be customized with the optional driver_name argument. Otherwise, a default is used.

Strings in the primary key should not exceed 100 characters.

The online database should already exist.

Note

Itis strongly suggested (but not required), to provide read-only database credentials via the read_secret_prefix in order to grant the least amount of database access privileges
to the served model. When providing a read_secret_prefix, the secrets must exist in the scope name using the expected format, otherwise publish_table will return an error.

Parameters: * hostname - Hostname to access online store. The database hostname cannot be changed. Subsequent publish calls to the same online store must provide the same hostname.
port - Port number to access online store. The database port cannot be changed. Subsequent publish calls to the same online store must provide the same port.

user - Username that has write access to the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

password - Password to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.

database_name - Database name.

table_name - Table name.

driver_name - Name of custom JDBC driver to access the online store.

read_secret_prefix -
The secret scope name and secret key name prefix where read-only online store credentials are stored. These credentials will be used during online feature serving to connect to the
online store from the served model. The format of this parameter should be ${scope-name}/${prefix}, which isthe name of the secret scope, followed by a 7, followed by the
secret key name prefix. The scope passed in must contain the following keys and corresponding values:
© ${prefix}-user where ${prefix} isthe value passed into this function. For example if this function is called with datascience/staging, the datascience secret scope
should contain the secret named staging-user, which points to a secret value with the database username for the online store.
© ${prefix}-password where ${prefix} isthe value passed into this function. For example if this function is called with datascience/staging, the datascience secret
scope should contain the secret named staging-password, which points to a secret value with the database password for the online store.
Once the read_secret_prefix is set for an online store, it cannot be changed.

write_secret_prefix -

The secret scope name and secret key name prefix where read-write online store credentials are stored. These credentials will be used to connect to the online store to publish
features. If user and password are passed, this field must be None, or an exception will be raised. The format of this parameter should be ${scope-name}/${prefix},whichis
the name of the secret scope, followed by a /, followed by the secret key name prefix. The scope passed in must contain the following keys and corresponding values:

o ${prefix}-user where ${prefix} isthe value passed into this function. For example if this function is called with datascience/staging, the datascience secret scope
should contain the secret named staging-user, which points to a secret value with the database username for the online store.
© ${prefix}-password where ${prefix} isthe value passed into this function. For example if this function is called with datascience/staging, the datascience secret

scope should contain the secret named staging-password, which points to a secret value with the database password for the online store.

type

Type of the online store.

table_name

Table name.

user
Warning

databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec.user isdeprecated since v0.6.0. This method will be removed in a future

release. Use write_secret_prefix instead.

Username that has access to the online store.

Property will be empty if write_secret_prefix argument was used.

password
Warning

databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec.password is deprecated since v0.6.0. This method will be removed in a future

release. Use write_secret_prefix instead.
Password to access the online store.
Property will be empty if write_secret_prefix argument was used.

driver

Name of the custom JDBC driver to access the online store.

https://docs.python.org/3/library/abc.html#abc.ABC

read_secret_prefix
Prefix for read access to online store.
Name of the secret scope and prefix that contains the username and password to access the online store with read-only credentials.

See the read_secret_prefix parameter description for details.

write_secret_prefix
Secret prefix that contains online store login info.

Name of the secret scope and prefix that contains the username and password to access the online store with read/write credentials. See the write_secret_prefix parameter
description for details.

cloud

Cloud provider where this online store is located.

store_type

Store type.

auth_type()

Publish Auth type.

