
Documentation 
FeatureStore 0.8.0 documentation

Databricks Feature Store

Python API

Databricks FeatureStoreClient

Bases: object

Client for interacting with the Databricks Feature Store.

Create and return a feature table with the given name and primary keys.

The returned feature table has the given name and primary keys.
Uses the provided schema or the inferred schema
of the provided df . If df is provided, this data will be saved in
a
Delta table. Supported data types for features are: IntegerType , LongType ,
FloatType , DoubleType , StringType , BooleanType , DateType ,
TimestampType , ShortType ,
ArrayType , MapType , and BinaryType ,
and DecimalType .

Parameters: name – A feature table name of the form <database_name>.<table_name> ,
for example dev.user_features .

primary_keys – The feature table’s primary keys. If multiple columns are required,
specify a list of column names, for example ['customer_id', 'region'] .

df – Data to insert into this feature table. The schema of
df will be used as the feature table schema.

timestamp_keys –
Columns containing the event time associated with feature value.
Timestamp keys and primary keys of the feature table uniquely identify the feature value
for an entity at a point
in time.

Note

Experimental: This argument may change or be removed in
a future release without warning.

partition_columns –
Columns used to partition the feature table. If a list is
provided, column ordering in the list will be used for partitioning.

Note

When choosing partition columns for your feature table, use columns that do
not have a high cardinality. An ideal strategy would be such that you
expect data in each partition
to be at least 1 GB.
The most commonly used partition column is a date .

Additional info: Choosing the right partition columns for Delta tables

schema – Feature table schema. Either schema or df must be provided.

description – Description of the feature table.
tags –
Tags to associate with the feature table.

Note

Available in version >= 0.4.1.

Other Parameters:

 path (Optional[str]) –
Path in a supported filesystem. Defaults to the database location.

Register an existing Delta table as a feature table with the given primary keys.

The returned feature table has the same name as the Delta table.

Note

Available in version >= 0.3.8.

class databricks.feature_store.client.FeatureStoreClient(feature_store_uri: Optional[str] = None, model_registry_uri: Optional[str] = None)

create_table(name: str, primary_keys: Union[str, List[str]], df: Optional[pyspark.sql.dataframe.DataFrame] = None, *, timestamp_keys: Union[str, List[str], None] = None, partition_columns:
Union[str, List[str], None] = None, schema: Optional[pyspark.sql.types.StructType] = None, description: Optional[str] = None, tags: Optional[Dict[str, str]] = None, **kwargs) →
databricks.feature_store.entities.feature_table.FeatureTable

register_table(*, delta_table: str, primary_keys: Union[str, List[str]], timestamp_keys: Union[str, List[str], None] = None, description: Optional[str] = None, tags: Optional[Dict[str, str]] = None)
→ databricks.feature_store.entities.feature_table.FeatureTable

Databricks Feature Store 0.8

https://docs.python.org/3/library/functions.html#object
https://bit.ly/3ueXsjv

Parameters: name – A Delta table name of the form <database_name>.<table_name> ,
for example dev.user_features . The table must exist in the metastore.

primary_keys – The Delta table’s primary keys. If multiple columns are required,
specify a list of column names, for example ['customer_id', 'region'] .

timestamp_keys – Columns containing the event time associated with feature value.
Together, the timestamp keys and primary keys uniquely identify the feature value at a point
in time.
description – Description of the feature table.
tags –
Tags to associate with the feature table.

Note

Available in version >= 0.4.1.

Returns: A FeatureTable object.

Get a feature table’s metadata.

Parameters: name – A feature table name of the form <database_name>.<table_name> , for
example dev.user_features .

Note

Experimental: This method may change or be removed in a future release without warning.

Delete the specified feature table. This API also drops the underlying Delta table.

Note

Available in version >= 0.4.1.

Parameters: name – The feature table name of the form <database_name>.<table_name> ,
for example dev.user_features .

Note

Deleting a feature table can lead to unexpected failures in upstream producers and
downstream consumers (models, endpoints, and scheduled jobs). You must delete any existing
published online stores separately.

Read the contents of a feature table.

Parameters: name – A feature table name of the form <database_name>.<table_name> , for
example dev.user_features .

Returns: The feature table contents, or an exception will be raised if this feature table does not
exist.

Writes to a feature table.

If the input DataFrame is streaming, will create a write stream.

Parameters: name – A feature table name of the form <database_name>.<table_name> ,
for example dev.user_features . Raises an exception if this feature table does not
exist.

df – Spark DataFrame with feature data. Raises an exception if the schema does not
match that of the feature table.

mode –
Two supported write modes:

"overwrite" updates the whole table.

"merge" will upsert the rows in df into the feature table. If df contains
columns not present in the feature table, these columns will be added as new features.

checkpoint_location – Sets the Structured Streaming checkpointLocation option.
By setting a checkpoint_location , Spark Structured Streaming will store
progress

information and intermediate state, enabling recovery after failures.
This parameter is only supported when the argument df is a streaming DataFrame .

trigger – If df.isStreaming , trigger defines the timing of stream data
processing, the dictionary will be unpacked and passed to DataStreamWriter.trigger
as

arguments. For example, trigger={'once': True} will result in a call to
DataStreamWriter.trigger(once=True) .

Returns: If df.isStreaming , returns a PySpark StreamingQuery . None otherwise.

Note

Experimental: This method may change or be removed in a future release without warning.

Add data sources to the feature table.

Parameters: feature_table_name – The feature table name.
source_names – Data source names. For multiple sources,
specify a list. If a data source name already exists, it is ignored.
source_type –
One of the following:

"table" : Table in format <database_name>.<table_name> and is stored in the metastore (eg Hive).

"path" : Path, eg in the Databricks File System (DBFS).

"custom" : Manually added data source, neither a table nor a path.

get_table(name: str) → databricks.feature_store.entities.feature_table.FeatureTable

drop_table(name: str) → None

read_table(name: str, **kwargs) → pyspark.sql.dataframe.DataFrame

write_table(name: str, df: pyspark.sql.dataframe.DataFrame, mode: str = 'merge', checkpoint_location: Optional[str] = None, trigger: Dict[str, Any] = {'processingTime': '5 seconds'}) →
Optional[pyspark.sql.streaming.StreamingQuery]

add_data_sources(*, feature_table_name: str, source_names: Union[str, List[str]], source_type: str = 'custom') → None

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.DataStreamWriter.trigger
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.StreamingQuery
https://docs.python.org/3/library/constants.html#None

Note

Experimental: This method may change or be removed in a future release without warning.

Delete data sources from the feature table.

Note

Data sources of all types (table, path, custom) that match the source names will be deleted.

Parameters: feature_table_name – The feature table name.
source_names – Data source names. For multiple sources,
specify a list. If a data source name does not exist,
it is ignored.

Publish a feature table to an online store.

Parameters: name – Name of the feature table.
online_store – Specification of the online store.
filter_condition – A SQL expression using feature table columns that filters feature
rows prior to publishing to the online store. For example, "dt > '2020-09-10'" . This
is

analogous to running df.filter or a WHERE condition in SQL on a feature table
prior to publishing.

mode –
Specifies the behavior when data already exists in this feature
table in the online store. If "overwrite" mode is used, existing data is
replaced by the new data. If "merge" mode
is used, the new data will be
merged in, under these conditions:

If a key exists in the online table but not the offline table,
the row in the online table is unmodified.
If a key exists in the offline table but not the online table,
the offline table row is inserted into the online table.
If a key exists in both the offline and the online tables,
the online table row will be updated.

streaming – If True , streams data to the online store.

checkpoint_location – Sets the Structured Streaming checkpointLocation option.
By setting a checkpoint_location , Spark Structured Streaming will store
progress

information and intermediate state, enabling recovery after failures.
This parameter is only supported when streaming=True .

trigger – If streaming=True , trigger defines the timing of
stream data processing. The dictionary will be unpacked and passed
to DataStreamWriter.trigger as

arguments. For example, trigger={'once': True}
will result in a call to DataStreamWriter.trigger(once=True) .

features –
Specifies the feature column(s) to be published to the online store.
The selected features must be a superset of existing online store features. Primary key columns
and timestamp
key columns will always be published.

Note

This parameter is only supported when mode="merge" . When features is not set, the whole feature table will be published.

Returns: If streaming=True , returns a PySpark StreamingQuery , None otherwise.

Create a TrainingSet .

Parameters: df – The DataFrame used to join features into.

feature_lookups – List of features to join into the DataFrame .

label – Names of column(s) in DataFrame that contain training set labels. To create a training set without a label field, i.e. for unsupervised training set, specify label = None.

exclude_columns – Names of the columns to drop from the TrainingSet DataFrame .

Returns: A TrainingSet object.

Log an MLflow model packaged with feature lookup information.

Note

The DataFrame returned
by TrainingSet.load_df() must be used to train the
model. If it has been modified (for example data normalization, add a column,
and similar),
these modifications will not be applied at inference time,
leading to training-serving skew.

Parameters: model – Model to be saved. This model must be capable of being saved by
flavor.save_model . See the MLflow Model API.

artifact_path – Run-relative artifact path.
flavor – MLflow module to use to log the model. flavor should have
type ModuleType .
The module must have a method save_model , and must support the

python_function
flavor. For example, mlflow.sklearn , mlflow.xgboost , and similar.

training_set – The TrainingSet used to train this model.

registered_model_name –

Note

Experimental: This argument may change or be removed in
a future release without warning.

If given, create a model version under registered_model_name ,
also creating a registered model if one with the given name does not exist.

await_registration_for – Number of seconds to wait for the model version to finish
being created and is in READY status. By default, the function waits for five minutes.
Specify 0

or None to skip waiting.

delete_data_sources(*, feature_table_name: str, source_names: Union[str, List[str]]) → None

publish_table(name: str, online_store: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec, *, filter_condition: Optional[str] = None, mode: str = 'merge', streaming:
bool = False, checkpoint_location: Optional[str] = None, trigger: Dict[str, Any] = {'processingTime': '5 minutes'}, features: Union[str, List[str], None] = None) →
Optional[pyspark.sql.streaming.StreamingQuery]

create_training_set(df: pyspark.sql.dataframe.DataFrame, feature_lookups: List[databricks.feature_store.entities.feature_lookup.FeatureLookup], label: Union[str, List[str], None],
exclude_columns: Optional[List[str]] = None) → databricks.feature_store.training_set.TrainingSet

log_model(model: Any, artifact_path: str, *, flavor: module, training_set: Optional[databricks.feature_store.training_set.TrainingSet] = None, registered_model_name: Optional[str] = None,
await_registration_for: int = 300, **kwargs)

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.DataStreamWriter.trigger
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.StreamingQuery
https://docs.python.org/3/library/constants.html#None
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://bit.ly/3yzl1r0
https://docs.python.org/3/library/types.html#types.ModuleType
https://mlflow.org/docs/latest/python_api/mlflow.sklearn.html#module-mlflow.sklearn
https://mlflow.org/docs/latest/python_api/mlflow.xgboost.html#module-mlflow.xgboost
https://docs.python.org/3/library/constants.html#None

Returns: None

Evaluate the model on the provided DataFrame .

Additional features required for
model evaluation will be automatically retrieved from Feature Store .

The model must have been logged with FeatureStoreClient.log_model() ,
which packages the model with feature metadata. Unless present in df ,
these features will be looked
up from Feature Store and joined with df
prior to scoring the model.

If a feature is included in df , the provided feature values will be used rather
than those stored in Feature Store .

For example, if a model is trained on two features account_creation_date and
num_lifetime_purchases , as in:

feature_lookups = [

 FeatureLookup(

 table_name = 'trust_and_safety.customer_features',

 feature_name = 'account_creation_date',

 lookup_key = 'customer_id',

),

 FeatureLookup(

 table_name = 'trust_and_safety.customer_features',

 feature_name = 'num_lifetime_purchases',

 lookup_key = 'customer_id'

),

]

with mlflow.start_run():

 training_set = fs.create_training_set(

 df,

 feature_lookups = feature_lookups,

 label = 'is_banned',

 exclude_columns = ['customer_id']

)

 ...

 fs.log_model(

 model,

 "model",

 flavor=mlflow.sklearn,

 training_set=training_set,

 registered_model_name="example_model"

)

Then at inference time, the caller of FeatureStoreClient.score_batch() must pass
a DataFrame that includes customer_id , the lookup_key specified in the
FeatureLookups of the training_set .
If the DataFrame contains a column
account_creation_date , the values of this column will be used
in lieu of those in
Feature Store . As in:

batch_df has columns ['customer_id', 'account_creation_date']

predictions = fs.score_batch(

 'models:/example_model/1',

 batch_df

)

Parameters: model_uri –
The location, in URI format, of the MLflow model logged using
FeatureStoreClient.log_model() . One of:

runs:/<mlflow_run_id>/run-relative/path/to/model

models:/<model_name>/<model_version>

models:/<model_name>/<stage>

For more information about URI schemes, see
Referencing Artifacts.

df –
The DataFrame to score the model on. Feature Store features will be joined with
df prior to scoring the model. df must:

1. Contain columns for lookup keys required to join feature data from Feature
Store, as specified in the feature_spec.yaml artifact.
2. Contain columns for all source keys required to score the model, as specified in
the feature_spec.yaml artifact.

3. Not contain a column prediction , which is reserved for the model’s predictions.
df may contain additional columns.

result_type – The return type of the model.
See mlflow.pyfunc.spark_udf() result_type.

Returns: A DataFrame
containing:

1. All columns of df .

2. All feature values retrieved from Feature Store.

3. A column prediction containing the output of the model.

Create or update a tag associated with the feature table. If the tag with the
corresponding key already exists, its value will be overwritten with the new value.

Note

Available in version >= 0.4.1.

score_batch(model_uri: str, df: pyspark.sql.dataframe.DataFrame, result_type: str = 'double') → pyspark.sql.dataframe.DataFrame

set_feature_table_tag(*, table_name: str, key: str, value: str) → None

https://docs.python.org/3/library/constants.html#None
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://bit.ly/3wnrseE
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.spark_udf
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Parameters: table_name – the feature table name
key – tag key
value – tag value

Delete the tag associated with the feature table. Deleting a non-existent tag will emit a warning.

Note

Available in version >= 0.4.1.

Parameters: table_name – the feature table name.
key – the tag key to delete.

Feature Lookup

Bases: databricks.feature_store.entities._feature_store_object._FeatureStoreObject

Value class used to specify a feature to use in a TrainingSet .

Parameters: table_name – Feature table name.
lookup_key – Key to use when joining this feature table with the DataFrame passed to
FeatureStoreClient.create_training_set() . The lookup_key must be the columns

in the DataFrame passed to FeatureStoreClient.create_training_set() . The type of
lookup_key columns in that DataFrame must match the type of the primary key of the

feature table referenced in this FeatureLookup .

feature_names – A single feature name, a list of feature names, or None to lookup all features
(excluding primary keys) in the feature table at the time that the training set is created. If
your model
requires primary keys as features, you can declare them as independent FeatureLookups.
rename_outputs – If provided, renames features in the TrainingSet
returned by of FeatureStoreClient.create_training_set .

timestamp_lookup_key –
Key to use when performing point-in-time lookup on this feature table
with the DataFrame passed to FeatureStoreClient.create_training_set() .
The
timestamp_lookup_key must be the columns in the DataFrame passed to FeatureStoreClient.create_training_set() .
The type of timestamp_lookup_key columns in
that DataFrame must match the type of the timestamp key of the
feature table referenced in this FeatureLookup .

Note

Experimental: This argument may change or be removed in
a future release without warning.

feature_name – Feature name. Deprecated as of version 0.3.4. Use feature_names .

output_name – If provided, rename this feature in the output of
FeatureStoreClient.create_training_set .
Deprecated as of version 0.3.4 . Use rename_outputs .

Initialize a FeatureLookup object.

The table name to use in this FeatureLookup.

The lookup key(s) to use in this FeatureLookup.

The feature name to use in this FeatureLookup. Deprecated as of version 0.3.4. Use feature_names .

The output name to use in this FeatureLookup. Deprecated as of version 0.3.4. Use feature_names .

Training Set

Bases: object

Class that defines TrainingSet objects.

Note

The TrainingSet constructor should not be called directly. Instead,
call FeatureStoreClient.create_training_set .

Load a DataFrame .

Return a DataFrame for training.

The returned DataFrame has columns specified
in the feature_spec and labels parameters provided
in FeatureStoreClient.create_training_set .

Returns: A DataFrame for training

delete_feature_table_tag(*, table_name: str, key: str) → None

class databricks.feature_store.entities.feature_lookup.FeatureLookup(table_name: str, lookup_key: Union[str, List[str]], *, feature_names: Union[str, List[str], None] = None,
rename_outputs: Optional[Dict[str, str]] = None, timestamp_lookup_key: Union[str, List[str], None] = None, **kwargs)

__init__(table_name: str, lookup_key: Union[str, List[str]], *, feature_names: Union[str, List[str], None] = None, rename_outputs: Optional[Dict[str, str]] = None, timestamp_lookup_key: Union[str,
List[str], None] = None, **kwargs)

table_name

lookup_key

feature_name

output_name

class databricks.feature_store.training_set.TrainingSet(feature_spec: databricks.feature_store.entities.feature_spec.FeatureSpec, df: pyspark.sql.dataframe.DataFrame, labels:
List[str], feature_table_metadata_map: Dict[str, databricks.feature_store.entities.feature_table.FeatureTable], feature_table_data_map: Dict[str, pyspark.sql.dataframe.DataFrame])

load_df() → pyspark.sql.dataframe.DataFrame

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://docs.python.org/3/library/functions.html#object
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Feature Table
Classes

Value class describing one feature table.

This will typically not be instantiated directly, instead the
FeatureStoreClient.create_table
will create FeatureTable objects.

Online Store Spec

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

Class that defines and creates AmazonRdsMySqlSpec objects.

This OnlineStoreSpec implementation is intended for publishing
features to Amazon RDS MySQL and Aurora (MySQL-compatible edition).

See OnlineStoreSpec documentation for more usage information,
including parameter descriptions.

Parameters: hostname – Hostname to access online store.
port – Port number to access online store.
user – Username that has access to the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

password – Password to access the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

database_name – Database name.
table_name – Table name.
driver_name – Name of custom JDBC driver to access the online store.
read_secret_prefix – Prefix for read secret.
write_secret_prefix – Prefix for write secret.

Hostname to access the online store.

Port number to access the online store.

Database name.

Define the cloud propert for the data store.

Define the data store type property.

Publish Auth type.

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

Define the AzureMySqlSpec class.

This OnlineStoreSpec
implementation is intended for publishing
features to Azure Database for MySQL.

See OnlineStoreSpec
documentation for more usage information,
including parameter descriptions.

Parameters: hostname – Hostname to access online store.
port – Port number to access online store.
user – Username that has access to the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

password – Password to access the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

database_name – Database name.
table_name – Table name.
driver_name – Name of custom JDBC driver to access the online store.
read_secret_prefix – Prefix for read secret.
write_secret_prefix – Prefix for write secret.

Hostname to access the online store.

Port number to access the online store.

Database name.

class databricks.feature_store.entities.feature_table.FeatureTable(name, table_id, description, primary_keys, partition_columns, features, creation_timestamp=None,
online_stores=None, notebook_producers=None, job_producers=None, table_data_sources=None, path_data_sources=None, custom_data_sources=None, timestamp_keys=None, tags=None)

class databricks.feature_store.online_store_spec.AmazonRdsMySqlSpec(hostname: str, port: int, user: Optional[str] = None, password: Optional[str] = None, database_name:
Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None)

hostname

port

database_name

cloud

store_type

auth_type()

class databricks.feature_store.online_store_spec.AzureMySqlSpec(hostname: str, port: int, user: Optional[str] = None, password: Optional[str] = None, database_name: Optional[str]
= None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None)

hostname

port

database_name

Define the cloud the fature store runs.

Define the data store type.

Publish Auth type.

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

This OnlineStoreSpec
implementation is intended for publishing features to Azure SQL Database (SQL Server).

The spec supports SQL Server 2019 and newer.

See OnlineStoreSpec documentation
for more usage information, including parameter descriptions.

Parameters: hostname – Hostname to access online store.
port – Port number to access online store.
user – Username that has access to the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

password – Password to access the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

database_name – Database name.
table_name – Table name.
driver_name – Name of custom JDBC driver to access the online store.
read_secret_prefix – Prefix for read secret.
write_secret_prefix – Prefix for write secret.

Hostname to access the online store.

Port number to access the online store.

Database name.

Define the cloud the fature store runs.

Define the data store type.

Publish Auth type.

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

This OnlineStoreSpec
implementation is intended for publishing features to Amazon DynamoDB.

If table_name is not provided,
FeatureStoreClient.publish_table
will use the offline store’s database and table name combined as the online table name.

To use a different table name in the online store, provide a value for the table_name argument.

The expected read or write secrets for DynamoDB for a given {prefix} string are
${prefix}-access-key-id , ${prefix}-secret-access-key , and
${prefix}-session-token .

If none of the access_key_id, secret_access_key, and write_secret_prefix are passed,
the instance profile attached to the cluster will be used to write to DynamoDB.

Note

AmazonDynamoDBSpec is available in version >= 0.3.8.

Instance profile based writes are available in version >= 0.4.1.

Parameters: region – Region to access online store.
access_key_id – Access key ID that has access to the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

secret_access_key – Secret access key to access the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

session_token – Session token to access the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

table_name – Table name.
read_secret_prefix – Prefix for read secret.
write_secret_prefix – Prefix for write secret.
ttl – The time to live for data published to the online store. This attribute is only applicable when
publishing time series feature tables. If the time to live is specified for a time series
table,
FeatureStoreClient.publish_table() will publish a window of data instead of the latest snapshot.

Warning

cloud

store_type

auth_type()

class databricks.feature_store.online_store_spec.AzureSqlServerSpec(hostname: str, port: int, user: Optional[str] = None, password: Optional[str] = None, database_name:
Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None)

hostname

port

database_name

cloud

store_type

auth_type()

class databricks.feature_store.online_store_spec.AmazonDynamoDBSpec(*, region: Optional[str], access_key_id: Optional[str] = None, secret_access_key: Optional[str] = None,
session_token: Optional[str] = None, table_name: Optional[str] = None, read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None, ttl: Optional[datetime.timedelta] = None)

access_key_id

databricks.feature_store.online_store_spec.amazon_dynamodb_online_store_spec.AmazonDynamoDBSpec.access_key_id is deprecated since v0.6.0. This
method will be removed in a future release. Use write_secret_prefix instead.

Access key ID that has access to the online store.
Property will be empty if write_secret_prefix or the
instance profile attached to the cluster are intended to be used.

Warning

databricks.feature_store.online_store_spec.amazon_dynamodb_online_store_spec.AmazonDynamoDBSpec.secret_access_key is deprecated since v0.6.0.
This method will be removed in a future release. Use write_secret_prefix instead.

Secret access key to access the online store.
Property will be empty if write_secret_prefix or the
instance profile attached to the cluster are intended to be used.

Warning

databricks.feature_store.online_store_spec.amazon_dynamodb_online_store_spec.AmazonDynamoDBSpec.session_token is deprecated since v0.6.0. This
method will be removed in a future release. Use write_secret_prefix instead.

Session token to access the online store.
Property will be empty if write_secret_prefix or the
instance profile attached to the cluster are intended to be used.

Define the cloud property for the data store.

Define the data store type.

Region to access the online store.

Time to live attribute for the online store.

Publish Auth type.

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

This OnlineStoreSpec
implementation is intended for publishing features to Azure Cosmos DB.

If database_name and container_name are not provided,
FeatureStoreClient.publish_table
will use the offline store’s database and table name as the Cosmos DB database
and container name.

The expected read or write secret for Cosmos DB for a given {prefix} string is
${prefix}-authorization-key .

The authorization key can be either the Cosmos DB account primary or secondary key.

Note

Available in version >= 0.5.0.

Parameters: account_uri – URI of the Cosmos DB account.
database_name – Database name.
container_name – Container name.
read_secret_prefix – Prefix for read secret.
write_secret_prefix – Prefix for write secret.

Account URI of the online store.

Database name.

Container name.

Define the cloud property for the data store.

Define the data store type.

secret_access_key

session_token

cloud

store_type

region

ttl

auth_type()

class databricks.feature_store.online_store_spec.AzureCosmosDBSpec(*, account_uri: str, database_name: Optional[str] = None, container_name: Optional[str] = None,
read_secret_prefix: Optional[str] = None, write_secret_prefix: str)

account_uri

database_name

container_name

cloud

store_type

Publish Auth type.

Bases: abc.ABC

Parent class for all types of OnlineStoreSpec objects.

Abstract base class for classes that specify the online store to publish to.

If database_name and table_name are not provided,
FeatureStoreClient.publish_table
will use the offline store’s database and table
names.

To use a different database and table name in the online store, provide values for
both database_name and table_name arguments.

The JDBC driver can be customized with the optional driver_name argument.
Otherwise, a default is used.

Strings in the primary key should not exceed 100 characters.

The online database should already exist.

Note

It is strongly suggested (but not required), to provide read-only database credentials via
the read_secret_prefix in order to grant the least amount of database access
privileges
to the served model. When providing a read_secret_prefix , the secrets must
exist in the scope name using the expected format,
otherwise publish_table will return an error.

Parameters: hostname – Hostname to access online store. The database hostname cannot be changed. Subsequent publish
calls to the same online store must provide the same hostname.
port – Port number to access online store. The database port cannot be changed. Subsequent publish
calls to the same online store must provide the same port.
user – Username that has write access to the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

password – Password to access the online store. Deprecated as of version 0.6.0.
Use write_secret_prefix instead.

database_name – Database name.
table_name – Table name.
driver_name – Name of custom JDBC driver to access the online store.
read_secret_prefix –
The secret scope name and secret key name prefix where read-only online store
credentials are stored. These credentials will be used during online feature serving to connect to the
online store from the served model. The format of this parameter should be ${scope-name}/${prefix} ,
which is the name of the secret scope, followed by a / , followed by the
secret key name prefix. The
scope passed in must contain the following keys and corresponding values:

${prefix}-user where ${prefix} is the value passed into this function. For example if this
function is called with datascience/staging , the datascience secret scope

should contain the
secret named staging-user , which points to a secret value with the database username for the
online store.

${prefix}-password where ${prefix} is the value passed into this function. For example if this
function is called with datascience/staging , the datascience secret

scope should contain the
secret named staging-password , which points to a secret value with the database password for the
online store.
Once the read_secret_prefix is set for an online store, it cannot be changed.

write_secret_prefix –
The secret scope name and secret key name prefix where read-write online store
credentials are stored. These credentials will be used to connect to the online store to publish
features. If user and password are passed, this field must be None , or an exception will be raised.
The format of this parameter should be ${scope-name}/${prefix} , which is
the name of the secret scope,
followed by a / , followed by the secret key name prefix. The scope passed in must contain the following
keys and corresponding values:

${prefix}-user where ${prefix} is the value passed into this function. For example if this
function is called with datascience/staging , the datascience secret scope

should contain the
secret named staging-user , which points to a secret value with the database username for the
online store.

${prefix}-password where ${prefix} is the value passed into this function. For example if this
function is called with datascience/staging , the datascience secret

scope should contain the
secret named staging-password , which points to a secret value with the database password for the
online store.

Type of the online store.

Table name.

Warning

databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec.user is deprecated since v0.6.0. This method will be removed in a future
release. Use write_secret_prefix instead.

Username that has access to the online store.

Property will be empty if write_secret_prefix argument was used.

Warning

databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec.password is deprecated since v0.6.0. This method will be removed in a future
release. Use write_secret_prefix instead.

Password to access the online store.

Property will be empty if write_secret_prefix argument was used.

Name of the custom JDBC driver to access the online store.

auth_type()

class databricks.feature_store.online_store_spec.OnlineStoreSpec(_type, hostname: [<class 'str'>, None] = None, port: [<class 'int'>, None] = None, user: Optional[str] = None,
password: Optional[str] = None, database_name: Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix: Optional[str] = None,
write_secret_prefix: Optional[str] = None, _internal_properties: Optional[Dict[str, str]] = None)

type

table_name

user

password

driver

https://docs.python.org/3/library/abc.html#abc.ABC

Prefix for read access to online store.

Name of the secret scope and prefix that contains the username and password to access
the online store with read-only credentials.

See the read_secret_prefix parameter description for details.

Secret prefix that contains online store login info.

Name of the secret scope and prefix that contains the username and password to access
the online store with read/write credentials.
See the write_secret_prefix parameter
description for details.

Cloud provider where this online store is located.

Store type.

Publish Auth type.

read_secret_prefix

write_secret_prefix

cloud

store_type

auth_type()

