import os import requests import numpy as np import pandas as pd def create_tf_serving_json(data): return {'inputs': {name: data[name].tolist() for name in data.keys()} if isinstance(data, dict) else data.tolist()} def process_input(dataset): if isinstance(dataset, pd.DataFrame): return {'dataframe_split': dataset.to_dict(orient='split')} elif isinstance(dataset, str): return dataset else: return create_tf_serving_json(dataset) def score_model(dataset): url = f'{shard_url}/model-endpoint/{model_name}/1/invocations' databricks_token = <YOUR-TOKEN> headers = {'Authorization': f'Bearer {databricks_token}'} data_json = process_input(dataset) response = requests.request(method='POST', headers=headers, url=url, json=data_json) if response.status_code != 200: raise Exception(f'Request failed with status {response.status_code}, {response.text}') return response.json()
Test Serverless endpoint by querying your model
The notebook loads an input example that was logged with the registered model,
ElasticNetDiabetes
, and queries the model to test the servereless endpoint.Prerequisites