/databricks/spark/python/pyspark/sql/context.py:77: DeprecationWarning: Deprecated in 3.0.0. Use SparkSession.builder.getOrCreate() instead.
DeprecationWarning)
Epoch 1/100
1/19 [>.............................] - ETA: 0s - loss: 9484723.0000WARNING:tensorflow:From /databricks/python/lib/python3.7/site-packages/tensorflow/python/ops/summary_ops_v2.py:1277: stop (from tensorflow.python.eager.profiler) is deprecated and will be removed after 2020-07-01.
Instructions for updating:
use `tf.profiler.experimental.stop` instead.
WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0013s vs `on_train_batch_end` time: 0.0068s). Check your callbacks.
19/19 [==============================] - 0s 9ms/step - loss: 10067302.0000 - val_loss: 7770970.0000
Epoch 2/100
19/19 [==============================] - 0s 6ms/step - loss: 9562933.0000 - val_loss: 7257168.5000
Epoch 3/100
19/19 [==============================] - 0s 2ms/step - loss: 8938973.0000 - val_loss: 6646180.0000
Epoch 4/100
19/19 [==============================] - 0s 2ms/step - loss: 8216568.0000 - val_loss: 5976497.0000
Epoch 5/100
19/19 [==============================] - 0s 2ms/step - loss: 7447836.0000 - val_loss: 5370607.0000
Epoch 6/100
19/19 [==============================] - 0s 2ms/step - loss: 6758506.0000 - val_loss: 4900572.0000
Epoch 7/100
19/19 [==============================] - 0s 2ms/step - loss: 6210918.0000 - val_loss: 4613708.0000
Epoch 8/100
19/19 [==============================] - 0s 2ms/step - loss: 5830125.0000 - val_loss: 4501453.0000
Epoch 9/100
19/19 [==============================] - 0s 2ms/step - loss: 5628230.0000 - val_loss: 4500190.0000
Epoch 10/100
19/19 [==============================] - 0s 2ms/step - loss: 5527121.5000 - val_loss: 4537889.0000
Epoch 11/100
19/19 [==============================] - 0s 2ms/step - loss: 5489752.0000 - val_loss: 4571292.5000
Epoch 12/100
19/19 [==============================] - 0s 2ms/step - loss: 5465207.5000 - val_loss: 4590183.0000
Epoch 13/100
19/19 [==============================] - 0s 2ms/step - loss: 5447360.5000 - val_loss: 4587871.0000
Epoch 14/100
19/19 [==============================] - 0s 2ms/step - loss: 5435397.5000 - val_loss: 4544777.5000
Epoch 15/100
19/19 [==============================] - 0s 2ms/step - loss: 5412849.0000 - val_loss: 4559014.0000
Epoch 16/100
19/19 [==============================] - 0s 2ms/step - loss: 5395060.5000 - val_loss: 4559205.5000
Epoch 17/100
19/19 [==============================] - 0s 2ms/step - loss: 5376707.0000 - val_loss: 4537700.5000
Epoch 18/100
19/19 [==============================] - 0s 2ms/step - loss: 5358261.0000 - val_loss: 4516561.5000
Epoch 19/100
19/19 [==============================] - 0s 2ms/step - loss: 5338590.0000 - val_loss: 4500343.0000
Epoch 20/100
19/19 [==============================] - 0s 2ms/step - loss: 5319505.5000 - val_loss: 4485660.0000
Epoch 21/100
19/19 [==============================] - 0s 2ms/step - loss: 5299456.5000 - val_loss: 4468097.5000
Epoch 22/100
19/19 [==============================] - 0s 2ms/step - loss: 5280401.0000 - val_loss: 4453151.0000
Epoch 23/100
19/19 [==============================] - 0s 2ms/step - loss: 5258781.5000 - val_loss: 4441619.5000
Epoch 24/100
19/19 [==============================] - 0s 2ms/step - loss: 5237484.0000 - val_loss: 4432260.0000
Epoch 25/100
19/19 [==============================] - 0s 2ms/step - loss: 5216421.5000 - val_loss: 4422940.0000
Epoch 26/100
19/19 [==============================] - 0s 2ms/step - loss: 5194179.5000 - val_loss: 4373990.0000
Epoch 27/100
19/19 [==============================] - 0s 2ms/step - loss: 5167187.5000 - val_loss: 4372833.5000
Epoch 28/100
19/19 [==============================] - 0s 2ms/step - loss: 5146688.0000 - val_loss: 4366647.0000
Epoch 29/100
19/19 [==============================] - 0s 2ms/step - loss: 5119176.0000 - val_loss: 4319375.5000
Epoch 30/100
19/19 [==============================] - 0s 2ms/step - loss: 5092856.0000 - val_loss: 4298915.5000
Epoch 31/100
19/19 [==============================] - 0s 2ms/step - loss: 5069950.0000 - val_loss: 4257826.0000
Epoch 32/100
19/19 [==============================] - 0s 2ms/step - loss: 5039203.5000 - val_loss: 4268547.0000
Epoch 33/100
19/19 [==============================] - 0s 2ms/step - loss: 5011379.5000 - val_loss: 4239205.0000
Epoch 34/100
19/19 [==============================] - 0s 2ms/step - loss: 4985568.0000 - val_loss: 4241627.0000
Epoch 35/100
19/19 [==============================] - 0s 2ms/step - loss: 4947238.5000 - val_loss: 4161798.0000
Epoch 36/100
19/19 [==============================] - 0s 2ms/step - loss: 4915470.5000 - val_loss: 4137575.0000
Epoch 37/100
19/19 [==============================] - 0s 2ms/step - loss: 4881914.5000 - val_loss: 4118528.7500
Epoch 38/100
19/19 [==============================] - 0s 2ms/step - loss: 4844858.5000 - val_loss: 4078730.0000
Epoch 39/100
19/19 [==============================] - 0s 2ms/step - loss: 4809075.5000 - val_loss: 4070097.7500
Epoch 40/100
19/19 [==============================] - 0s 2ms/step - loss: 4771630.5000 - val_loss: 4043004.5000
Epoch 41/100
19/19 [==============================] - 0s 2ms/step - loss: 4731070.0000 - val_loss: 4005449.7500
Epoch 42/100
19/19 [==============================] - 0s 2ms/step - loss: 4684211.0000 - val_loss: 3962441.5000
Epoch 43/100
19/19 [==============================] - 0s 2ms/step - loss: 4636608.5000 - val_loss: 3916048.2500
Epoch 44/100
19/19 [==============================] - 0s 2ms/step - loss: 4589868.0000 - val_loss: 3892645.5000
Epoch 45/100
19/19 [==============================] - 0s 2ms/step - loss: 4544527.0000 - val_loss: 3821463.2500
Epoch 46/100
19/19 [==============================] - 0s 2ms/step - loss: 4499638.0000 - val_loss: 3809383.0000
Epoch 47/100
19/19 [==============================] - 0s 2ms/step - loss: 4450561.0000 - val_loss: 3724508.5000
Epoch 48/100
19/19 [==============================] - 0s 2ms/step - loss: 4391499.5000 - val_loss: 3739167.5000
Epoch 49/100
19/19 [==============================] - 0s 2ms/step - loss: 4341117.0000 - val_loss: 3678887.2500
Epoch 50/100
19/19 [==============================] - 0s 2ms/step - loss: 4287635.5000 - val_loss: 3637396.5000
Epoch 51/100
19/19 [==============================] - 0s 2ms/step - loss: 4233032.0000 - val_loss: 3584930.5000
Epoch 52/100
19/19 [==============================] - 0s 2ms/step - loss: 4180039.0000 - val_loss: 3527865.0000
Epoch 53/100
19/19 [==============================] - 0s 2ms/step - loss: 4115761.0000 - val_loss: 3525460.2500
Epoch 54/100
19/19 [==============================] - 0s 2ms/step - loss: 4058294.2500 - val_loss: 3428790.5000
Epoch 55/100
19/19 [==============================] - 0s 2ms/step - loss: 4002944.5000 - val_loss: 3385822.2500
Epoch 56/100
19/19 [==============================] - 0s 2ms/step - loss: 3948906.5000 - val_loss: 3337103.7500
Epoch 57/100
19/19 [==============================] - 0s 2ms/step - loss: 3887851.7500 - val_loss: 3299175.5000
Epoch 58/100
19/19 [==============================] - 0s 2ms/step - loss: 3827925.0000 - val_loss: 3246767.0000
Epoch 59/100
19/19 [==============================] - 0s 2ms/step - loss: 3764823.2500 - val_loss: 3189476.7500
Epoch 60/100
19/19 [==============================] - 0s 2ms/step - loss: 3704606.7500 - val_loss: 3126584.0000
Epoch 61/100
19/19 [==============================] - 0s 2ms/step - loss: 3640626.7500 - val_loss: 3098789.2500
Epoch 62/100
19/19 [==============================] - 0s 2ms/step - loss: 3577066.7500 - val_loss: 3048370.0000
Epoch 63/100
19/19 [==============================] - 0s 2ms/step - loss: 3513250.5000 - val_loss: 2993557.0000
Epoch 64/100
19/19 [==============================] - 0s 2ms/step - loss: 3443939.5000 - val_loss: 2908029.7500
Epoch 65/100
19/19 [==============================] - 0s 2ms/step - loss: 3379032.5000 - val_loss: 2873386.7500
Epoch 66/100
19/19 [==============================] - 0s 2ms/step - loss: 3307983.0000 - val_loss: 2800540.7500
Epoch 67/100
19/19 [==============================] - 0s 2ms/step - loss: 3240870.0000 - val_loss: 2747316.5000
Epoch 68/100
19/19 [==============================] - 0s 2ms/step - loss: 3175030.5000 - val_loss: 2688108.0000
Epoch 69/100
19/19 [==============================] - 0s 2ms/step - loss: 3111936.0000 - val_loss: 2656021.5000
Epoch 70/100
19/19 [==============================] - 0s 2ms/step - loss: 3039488.7500 - val_loss: 2549916.7500
Epoch 71/100
19/19 [==============================] - 0s 2ms/step - loss: 2969658.7500 - val_loss: 2532856.2500
Epoch 72/100
19/19 [==============================] - 0s 2ms/step - loss: 2905318.7500 - val_loss: 2467766.5000
Epoch 73/100
19/19 [==============================] - 0s 2ms/step - loss: 2833125.5000 - val_loss: 2386220.0000
Epoch 74/100
19/19 [==============================] - 0s 2ms/step - loss: 2760761.0000 - val_loss: 2361742.2500
Epoch 75/100
19/19 [==============================] - 0s 2ms/step - loss: 2693665.5000 - val_loss: 2252839.0000
Epoch 76/100
19/19 [==============================] - 0s 2ms/step - loss: 2625533.5000 - val_loss: 2208679.2500
Epoch 77/100
19/19 [==============================] - 0s 2ms/step - loss: 2553439.7500 - val_loss: 2140409.0000
Epoch 78/100
19/19 [==============================] - 0s 2ms/step - loss: 2494428.0000 - val_loss: 2127855.2500
Epoch 79/100
19/19 [==============================] - 0s 2ms/step - loss: 2426929.0000 - val_loss: 2021563.8750
Epoch 80/100
19/19 [==============================] - 0s 2ms/step - loss: 2350609.7500 - val_loss: 1962679.5000
Epoch 81/100
19/19 [==============================] - 0s 2ms/step - loss: 2285125.7500 - val_loss: 1923779.2500
Epoch 82/100
19/19 [==============================] - 0s 2ms/step - loss: 2225017.5000 - val_loss: 1837375.3750
Epoch 83/100
19/19 [==============================] - 0s 2ms/step - loss: 2159625.5000 - val_loss: 1817587.8750
Epoch 84/100
19/19 [==============================] - 0s 2ms/step - loss: 2088580.0000 - val_loss: 1721310.5000
Epoch 85/100
19/19 [==============================] - 0s 2ms/step - loss: 2026857.8750 - val_loss: 1693849.5000
Epoch 86/100
19/19 [==============================] - 0s 2ms/step - loss: 1961367.0000 - val_loss: 1626255.5000
Epoch 87/100
19/19 [==============================] - 0s 2ms/step - loss: 1898749.7500 - val_loss: 1569436.5000
Epoch 88/100
19/19 [==============================] - 0s 2ms/step - loss: 1837694.0000 - val_loss: 1526256.0000
Epoch 89/100
19/19 [==============================] - 0s 2ms/step - loss: 1777762.1250 - val_loss: 1468514.3750
Epoch 90/100
19/19 [==============================] - 0s 2ms/step - loss: 1717962.8750 - val_loss: 1402799.1250
Epoch 91/100
19/19 [==============================] - 0s 2ms/step - loss: 1662396.0000 - val_loss: 1372346.3750
Epoch 92/100
19/19 [==============================] - 0s 2ms/step - loss: 1605381.0000 - val_loss: 1291905.0000
Epoch 93/100
19/19 [==============================] - 0s 2ms/step - loss: 1545358.8750 - val_loss: 1266034.1250
Epoch 94/100
19/19 [==============================] - 0s 2ms/step - loss: 1490568.7500 - val_loss: 1218560.6250
Epoch 95/100
19/19 [==============================] - 0s 2ms/step - loss: 1433521.1250 - val_loss: 1153090.3750
Epoch 96/100
19/19 [==============================] - 0s 2ms/step - loss: 1386462.6250 - val_loss: 1100352.6250
Epoch 97/100
19/19 [==============================] - 0s 2ms/step - loss: 1331285.8750 - val_loss: 1082801.7500
Epoch 98/100
19/19 [==============================] - 0s 2ms/step - loss: 1280609.0000 - val_loss: 1025335.3750
Epoch 99/100
19/19 [==============================] - 0s 2ms/step - loss: 1232648.1250 - val_loss: 979178.9375
Epoch 100/100
19/19 [==============================] - 0s 2ms/step - loss: 1185373.6250 - val_loss: 942745.7500
Out[9]: <RegisteredModel: creation_timestamp=1612469631555, description=('This model forecasts the power output of a wind farm based on weather data. '
'The weather data consists of three features: wind speed, wind direction, and '
'air temperature.'), last_updated_timestamp=1612469638094, latest_versions=[], name='power-forecasting-model', tags={}>
Out[10]: <ModelVersion: creation_timestamp=1612469631744, current_stage='None', description=('This model version was built using TensorFlow Keras. It is a feed-forward '
'neural network with one hidden layer.'), last_updated_timestamp=1612469638175, name='power-forecasting-model', run_id='41c0dd1acaf74ad8b35b76169fdebe41', run_link='', source='dbfs:/databricks/mlflow-tracking/2314812274044967/41c0dd1acaf74ad8b35b76169fdebe41/artifacts/model', status='READY', status_message='', tags={}, user_id='1486628617178110', version='1'>
Out[11]: <ModelVersion: creation_timestamp=1612469631744, current_stage='Production', description=('This model version was built using TensorFlow Keras. It is a feed-forward '
'neural network with one hidden layer.'), last_updated_timestamp=1612469638268, name='', run_id='41c0dd1acaf74ad8b35b76169fdebe41', run_link='', source='dbfs:/databricks/mlflow-tracking/2314812274044967/41c0dd1acaf74ad8b35b76169fdebe41/artifacts/model', status='READY', status_message='', tags={}, user_id='1486628617178110', version='1'>
Loading registered model version from URI: 'models:/power-forecasting-model/1'
WARNING:tensorflow:From /databricks/python/lib/python3.7/site-packages/mlflow/keras.py:461: set_learning_phase (from tensorflow.python.keras.backend) is deprecated and will be removed after 2020-10-11.
Instructions for updating:
Simply pass a True/False value to the `training` argument of the `__call__` method of your layer or model.
/databricks/spark/python/pyspark/sql/context.py:77: DeprecationWarning: Deprecated in 3.0.0. Use SparkSession.builder.getOrCreate() instead.
DeprecationWarning)
Validation MSE: 44960
Registered model 'power-forecasting-model' already exists. Creating a new version of this model...
2021/02/04 20:14:07 INFO mlflow.tracking._model_registry.client: Waiting up to 300 seconds for model version to finish creation. Model name: power-forecasting-model, version 2
Created version '2' of model 'power-forecasting-model'.
Out[21]: <ModelVersion: creation_timestamp=1612469647314, current_stage='None', description=('This model version is a random forest containing 100 decision trees that was '
'trained in scikit-learn.'), last_updated_timestamp=1612469656897, name='power-forecasting-model', run_id='d45b1ac942e34a0ca59d408309605840', run_link='', source='dbfs:/databricks/mlflow-tracking/2314812274044967/d45b1ac942e34a0ca59d408309605840/artifacts/sklearn-model', status='READY', status_message='', tags={}, user_id='1486628617178110', version='2'>
Out[22]: <ModelVersion: creation_timestamp=1612469647314, current_stage='Staging', description=('This model version is a random forest containing 100 decision trees that was '
'trained in scikit-learn.'), last_updated_timestamp=1612469656979, name='', run_id='d45b1ac942e34a0ca59d408309605840', run_link='', source='dbfs:/databricks/mlflow-tracking/2314812274044967/d45b1ac942e34a0ca59d408309605840/artifacts/sklearn-model', status='READY', status_message='', tags={}, user_id='1486628617178110', version='2'>
Out[24]: <ModelVersion: creation_timestamp=1612469647314, current_stage='Production', description=('This model version is a random forest containing 100 decision trees that was '
'trained in scikit-learn.'), last_updated_timestamp=1612469659618, name='', run_id='d45b1ac942e34a0ca59d408309605840', run_link='', source='dbfs:/databricks/mlflow-tracking/2314812274044967/d45b1ac942e34a0ca59d408309605840/artifacts/sklearn-model', status='READY', status_message='', tags={}, user_id='1486628617178110', version='2'>
Out[26]: <ModelVersion: creation_timestamp=1612469631744, current_stage='Archived', description=('This model version was built using TensorFlow Keras. It is a feed-forward '
'neural network with one hidden layer.'), last_updated_timestamp=1612469661931, name='', run_id='41c0dd1acaf74ad8b35b76169fdebe41', run_link='', source='dbfs:/databricks/mlflow-tracking/2314812274044967/41c0dd1acaf74ad8b35b76169fdebe41/artifacts/model', status='READY', status_message='', tags={}, user_id='1486628617178110', version='1'>
Overview
The MLflow Model Registry component is a centralized model store, set of APIs, and UI, to collaboratively manage the full lifecycle of MLflow Models. It provides model lineage (which MLflow Experiment and Run produced the model), model versioning, stage transitions, annotations, and deployment management.
In this notebook, you use each of the MLflow Model Registry's components to develop and manage a production machine learning application. This notebook covers the following topics:
Requirements