Skip to main content

Create and edit prompts

Beta

This feature is in Beta.

This guide shows you how to create new prompts and manage their versions in the MLflow Prompt Registry using the MLflow Python SDK. All of the code on this page is included in the example notebook.

Prerequisites

  1. Install MLflow and required packages

    Bash
    pip install --upgrade "mlflow[databricks]>=3.1.0" openai
  2. Create an MLflow experiment by following the setup your environment quickstart.

  3. You must have CREATE FUNCTION privileges on a Unity Catalog schema. Prompts are stored as functions in Unity Catalog.

note

To use prompt registry, you must have CREATE FUNCTION privileges on a Unity Catalog schema. If you are using a Databricks trial account, you have the required privileges on the Unity Catalog schema workspace.default.

Step 1. Create a new prompt

You can create prompts programmatically using the Python SDK.

Create prompts programmatically using mlflow.genai.register_prompt(). Prompts use double-brace syntax ({{variable}}) for template variables.

Python
import mlflow

# Replace with a Unity Catalog schema where you have CREATE FUNCTION privileges
uc_schema = "workspace.default"
# This table will be created in the UC schema specified in the previous line
prompt_name = "summarization_prompt"

# Define the prompt template with variables
initial_template = """\
Summarize content you are provided with in {{num_sentences}} sentences.

Content: {{content}}
"""

# Register a new prompt
prompt = mlflow.genai.register_prompt(
name=f"{uc_schema}.{prompt_name}",
template=initial_template,
# all parameters below are optional
commit_message="Initial version of summarization prompt",
tags={
"author": "data-science-team@company.com",
"use_case": "document_summarization",
"task": "summarization",
"language": "en",
"model_compatibility": "gpt-4"
}
)

print(f"Created prompt '{prompt.name}' (version {prompt.version})")

Step 2: Use the prompt in your application

The following steps create a simple application that uses your prompt template.

  1. Load the prompt from the registry.
Python
# Load a specific version using URI syntax
prompt = mlflow.genai.load_prompt(name_or_uri=f"prompts:/{uc_schema}.{prompt_name}/1")

# Alternative syntax without URI
prompt = mlflow.genai.load_prompt(name_or_uri=f"{uc_schema}.{prompt_name}", version="1")
  1. Use the prompt in your application.
Python
import mlflow
from openai import OpenAI

# Enable MLflow's autologging to instrument your application with Tracing
mlflow.openai.autolog()

# Connect to a Databricks LLM via OpenAI using the same credentials as MLflow
# Alternatively, you can use your own OpenAI credentials here
mlflow_creds = mlflow.utils.databricks_utils.get_databricks_host_creds()
client = OpenAI(
api_key=mlflow_creds.token,
base_url=f"{mlflow_creds.host}/serving-endpoints"
)

# Use the trace decorator to capture the application's entry point
@mlflow.trace
def my_app(content: str, num_sentences: int):
# Format with variables
formatted_prompt = prompt.format(
content=content,
num_sentences=num_sentences
)

response = client.chat.completions.create(
model="databricks-claude-sonnet-4", # This example uses a Databricks hosted LLM - you can replace this with any AI Gateway or Model Serving endpoint. If you provide your own OpenAI credentials, replace with a valid OpenAI model e.g., gpt-4o, etc.
messages=[
{
"role": "system",
"content": "You are a helpful assistant.",
},
{
"role": "user",
"content": formatted_prompt,
},
],
)
return response.choices[0].message.content

result = my_app(content="This guide shows you how to integrate prompts from the MLflow Prompt Registry into your GenAI applications. You'll learn to load prompts, format them with dynamic data, and ensure complete lineage by linking prompt versions to your MLflow Models.", num_sentences=1)
print(result)

Step 3. Edit the prompt

Prompt versions are immutable after they are created. To edit a prompt, you must create a new version. This Git-like versioning ensures complete history and enables rollbacks.

Create a new version by calling mlflow.genai.register_prompt() with an existing prompt name:

Python
import mlflow

# Define the improved template
new_template = """\
You are an expert summarizer. Condense the following content into exactly {{ num_sentences }} clear and informative sentences that capture the key points.

Content: {{content}}

Your summary should:
- Contain exactly {{num_sentences}} sentences
- Include only the most important information
- Be written in a neutral, objective tone
- Maintain the same level of formality as the original text
"""

# Register a new version
updated_prompt = mlflow.genai.register_prompt(
name=f"{uc_schema}.{prompt_name}",
template=new_template,
commit_message="Added detailed instructions for better output quality",
tags={
"author": "data-science-team@company.com",
"improvement": "Added specific guidelines for summary quality"
}
)

print(f"Created version {updated_prompt.version} of '{updated_prompt.name}'")

Step 4. Use the new prompt

The following code shows how to use the prompt.

Python
# Load a specific version using URI syntax
prompt = mlflow.genai.load_prompt(name_or_uri=f"prompts:/{uc_schema}.{prompt_name}/2")

# Or load from specific version
prompt = mlflow.genai.load_prompt(name_or_uri=f"{uc_schema}.{prompt_name}", version="2")

Step 5. Search and discover prompts

To find prompts in your Unity Catalog schema:

Python
# REQUIRED format for Unity Catalog - specify catalog and schema
results = mlflow.genai.search_prompts("catalog = 'workspace' AND schema = 'default'")

# Using variables for your schema
catalog_name = uc_schema.split('.')[0] # 'workspace'
schema_name = uc_schema.split('.')[1] # 'default'
results = mlflow.genai.search_prompts(f"catalog = '{catalog_name}' AND schema = '{schema_name}'")

# Limit results
results = mlflow.genai.search_prompts(
filter_string=f"catalog = '{catalog_name}' AND schema = '{schema_name}'",
max_results=50
)

Example notebook

Create and edit prompts example notebook

Open notebook in new tab

Next Steps