%pip install "https://ml-team-public-read.s3.amazonaws.com/wheels/automl/e4ca550b-2b31-45d1-bc08-bf4f71b90502/databricks_automl-0.1.dev0-py3-none-any.whl"
Python interpreter will be restarted.
Collecting databricks-automl==0.1.dev0
Downloading https://ml-team-public-read.s3.amazonaws.com/wheels/automl/e4ca550b-2b31-45d1-bc08-bf4f71b90502/databricks_automl-0.1.dev0-py3-none-any.whl (53 kB)
Requirement already satisfied: mlflow in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-automl==0.1.dev0) (1.13.1)
Collecting nbformat==5.0.4
Downloading nbformat-5.0.4-py3-none-any.whl (169 kB)
Collecting ipywidgets==7.6.3
Downloading ipywidgets-7.6.3-py2.py3-none-any.whl (121 kB)
Requirement already satisfied: pyarrow in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-automl==0.1.dev0) (1.0.1)
Collecting ipykernel==5.1.4
Downloading ipykernel-5.1.4-py3-none-any.whl (116 kB)
Requirement already satisfied: scikit-learn==0.23.2 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-automl==0.1.dev0) (0.23.2)
Requirement already satisfied: xgboost in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-automl==0.1.dev0) (1.3.3)
Requirement already satisfied: numpy in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-automl==0.1.dev0) (1.19.2)
Collecting requests==2.22.0
Downloading requests-2.22.0-py2.py3-none-any.whl (57 kB)
Requirement already satisfied: jinja2==2.11.2 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-automl==0.1.dev0) (2.11.2)
Requirement already satisfied: pandas in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-automl==0.1.dev0) (1.1.3)
Requirement already satisfied: wrapt==1.12.1 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-automl==0.1.dev0) (1.12.1)
Requirement already satisfied: matplotlib in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-automl==0.1.dev0) (3.2.2)
Requirement already satisfied: shap in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-automl==0.1.dev0) (0.38.1)
Collecting nbconvert==5.6.1
Downloading nbconvert-5.6.1-py2.py3-none-any.whl (455 kB)
Collecting jupyter-client==5.3.4
Downloading jupyter_client-5.3.4-py2.py3-none-any.whl (92 kB)
Requirement already satisfied: querystring-parser in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (1.2.4)
Requirement already satisfied: entrypoints in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (0.3)
Requirement already satisfied: protobuf>=3.6.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (3.13.0)
Requirement already satisfied: six>=1.10.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (1.15.0)
Requirement already satisfied: gunicorn; platform_system != "Windows" in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (20.0.4)
Requirement already satisfied: python-dateutil in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (2.8.1)
Requirement already satisfied: sqlparse>=0.3.1 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (0.4.1)
Collecting sqlalchemy
Downloading SQLAlchemy-1.3.23-cp38-cp38-manylinux2010_x86_64.whl (1.3 MB)
Requirement already satisfied: pyyaml in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (5.4.1)
Requirement already satisfied: databricks-cli>=0.8.7 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (0.14.1)
Collecting alembic<=1.4.1
Downloading alembic-1.4.1.tar.gz (1.1 MB)
Requirement already satisfied: click>=7.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (7.1.2)
Requirement already satisfied: azure-storage-blob>=12.0.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (12.7.1)
Collecting prometheus-flask-exporter
Downloading prometheus_flask_exporter-0.18.1.tar.gz (21 kB)
Requirement already satisfied: docker>=4.0.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (4.4.1)
Requirement already satisfied: Flask in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (1.1.2)
Requirement already satisfied: gitpython>=2.1.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (3.1.12)
Requirement already satisfied: cloudpickle in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from mlflow->databricks-automl==0.1.dev0) (1.6.0)
Requirement already satisfied: traitlets>=4.1 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from nbformat==5.0.4->databricks-automl==0.1.dev0) (5.0.5)
Collecting jsonschema!=2.5.0,>=2.4
Downloading jsonschema-3.2.0-py2.py3-none-any.whl (56 kB)
Requirement already satisfied: jupyter-core in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from nbformat==5.0.4->databricks-automl==0.1.dev0) (4.6.3)
Requirement already satisfied: ipython-genutils in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from nbformat==5.0.4->databricks-automl==0.1.dev0) (0.2.0)
Collecting widgetsnbextension~=3.5.0
Downloading widgetsnbextension-3.5.1-py2.py3-none-any.whl (2.2 MB)
Collecting jupyterlab-widgets>=1.0.0; python_version >= "3.6"
Downloading jupyterlab_widgets-1.0.0-py3-none-any.whl (243 kB)
Requirement already satisfied: ipython>=4.0.0; python_version >= "3.3" in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from ipywidgets==7.6.3->databricks-automl==0.1.dev0) (7.19.0)
Requirement already satisfied: tornado>=4.2 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from ipykernel==5.1.4->databricks-automl==0.1.dev0) (6.0.4)
Requirement already satisfied: threadpoolctl>=2.0.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from scikit-learn==0.23.2->databricks-automl==0.1.dev0) (2.1.0)
Requirement already satisfied: scipy>=0.19.1 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from scikit-learn==0.23.2->databricks-automl==0.1.dev0) (1.5.2)
Requirement already satisfied: joblib>=0.11 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from scikit-learn==0.23.2->databricks-automl==0.1.dev0) (0.17.0)
Requirement already satisfied: certifi>=2017.4.17 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from requests==2.22.0->databricks-automl==0.1.dev0) (2020.12.5)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from requests==2.22.0->databricks-automl==0.1.dev0) (3.0.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from requests==2.22.0->databricks-automl==0.1.dev0) (1.25.11)
Collecting idna<2.9,>=2.5
Downloading idna-2.8-py2.py3-none-any.whl (58 kB)
Requirement already satisfied: MarkupSafe>=0.23 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from jinja2==2.11.2->databricks-automl==0.1.dev0) (1.1.1)
Requirement already satisfied: pytz>=2017.2 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from pandas->databricks-automl==0.1.dev0) (2020.5)
Requirement already satisfied: kiwisolver>=1.0.1 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from matplotlib->databricks-automl==0.1.dev0) (1.3.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from matplotlib->databricks-automl==0.1.dev0) (2.4.7)
Requirement already satisfied: cycler>=0.10 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from matplotlib->databricks-automl==0.1.dev0) (0.10.0)
Requirement already satisfied: slicer==0.0.7 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from shap->databricks-automl==0.1.dev0) (0.0.7)
Requirement already satisfied: numba in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from shap->databricks-automl==0.1.dev0) (0.52.0)
Requirement already satisfied: tqdm>4.25.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from shap->databricks-automl==0.1.dev0) (4.50.2)
Collecting bleach
Downloading bleach-3.3.0-py2.py3-none-any.whl (283 kB)
Collecting mistune<2,>=0.8.1
Downloading mistune-0.8.4-py2.py3-none-any.whl (16 kB)
Collecting pandocfilters>=1.4.1
Downloading pandocfilters-1.4.3.tar.gz (16 kB)
Requirement already satisfied: pygments in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from nbconvert==5.6.1->databricks-automl==0.1.dev0) (2.7.2)
Collecting defusedxml
Downloading defusedxml-0.6.0-py2.py3-none-any.whl (23 kB)
Collecting testpath
Downloading testpath-0.4.4-py2.py3-none-any.whl (163 kB)
Requirement already satisfied: pyzmq>=13 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from jupyter-client==5.3.4->databricks-automl==0.1.dev0) (19.0.2)
Requirement already satisfied: setuptools in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from protobuf>=3.6.0->mlflow->databricks-automl==0.1.dev0) (50.3.1.post20201107)
Requirement already satisfied: tabulate>=0.7.7 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from databricks-cli>=0.8.7->mlflow->databricks-automl==0.1.dev0) (0.8.7)
Requirement already satisfied: Mako in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from alembic<=1.4.1->mlflow->databricks-automl==0.1.dev0) (1.1.3)
Requirement already satisfied: python-editor>=0.3 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from alembic<=1.4.1->mlflow->databricks-automl==0.1.dev0) (1.0.4)
Requirement already satisfied: msrest>=0.6.18 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from azure-storage-blob>=12.0.0->mlflow->databricks-automl==0.1.dev0) (0.6.20)
Requirement already satisfied: cryptography>=2.1.4 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from azure-storage-blob>=12.0.0->mlflow->databricks-automl==0.1.dev0) (3.1.1)
Requirement already satisfied: azure-core<2.0.0,>=1.10.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from azure-storage-blob>=12.0.0->mlflow->databricks-automl==0.1.dev0) (1.10.0)
Collecting prometheus_client
Downloading prometheus_client-0.9.0-py2.py3-none-any.whl (53 kB)
Requirement already satisfied: websocket-client>=0.32.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from docker>=4.0.0->mlflow->databricks-automl==0.1.dev0) (0.57.0)
Requirement already satisfied: itsdangerous>=0.24 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from Flask->mlflow->databricks-automl==0.1.dev0) (1.1.0)
Requirement already satisfied: Werkzeug>=0.15 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from Flask->mlflow->databricks-automl==0.1.dev0) (1.0.1)
Requirement already satisfied: gitdb<5,>=4.0.1 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from gitpython>=2.1.0->mlflow->databricks-automl==0.1.dev0) (4.0.5)
Requirement already satisfied: attrs>=17.4.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat==5.0.4->databricks-automl==0.1.dev0) (20.3.0)
Collecting pyrsistent>=0.14.0
Downloading pyrsistent-0.17.3.tar.gz (106 kB)
Collecting notebook>=4.4.1
Downloading notebook-6.2.0-py3-none-any.whl (9.5 MB)
Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.6.3->databricks-automl==0.1.dev0) (3.0.8)
Requirement already satisfied: decorator in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.6.3->databricks-automl==0.1.dev0) (4.4.2)
Requirement already satisfied: pexpect>4.3; sys_platform != "win32" in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.6.3->databricks-automl==0.1.dev0) (4.8.0)
Requirement already satisfied: backcall in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.6.3->databricks-automl==0.1.dev0) (0.2.0)
Requirement already satisfied: pickleshare in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.6.3->databricks-automl==0.1.dev0) (0.7.5)
Requirement already satisfied: jedi>=0.10 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.6.3->databricks-automl==0.1.dev0) (0.17.2)
Requirement already satisfied: llvmlite<0.36,>=0.35.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from numba->shap->databricks-automl==0.1.dev0) (0.35.0)
Requirement already satisfied: packaging in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from bleach->nbconvert==5.6.1->databricks-automl==0.1.dev0) (20.4)
Collecting webencodings
Downloading webencodings-0.5.1-py2.py3-none-any.whl (11 kB)
Requirement already satisfied: requests-oauthlib>=0.5.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from msrest>=0.6.18->azure-storage-blob>=12.0.0->mlflow->databricks-automl==0.1.dev0) (1.3.0)
Requirement already satisfied: isodate>=0.6.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from msrest>=0.6.18->azure-storage-blob>=12.0.0->mlflow->databricks-automl==0.1.dev0) (0.6.0)
Requirement already satisfied: cffi!=1.11.3,>=1.8 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from cryptography>=2.1.4->azure-storage-blob>=12.0.0->mlflow->databricks-automl==0.1.dev0) (1.14.3)
Requirement already satisfied: smmap<4,>=3.0.1 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from gitdb<5,>=4.0.1->gitpython>=2.1.0->mlflow->databricks-automl==0.1.dev0) (3.0.5)
Collecting argon2-cffi
Downloading argon2_cffi-20.1.0-cp35-abi3-manylinux1_x86_64.whl (97 kB)
Collecting Send2Trash>=1.5.0
Downloading Send2Trash-1.5.0-py3-none-any.whl (12 kB)
Collecting terminado>=0.8.3
Downloading terminado-0.9.2-py3-none-any.whl (14 kB)
Requirement already satisfied: wcwidth in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.6.3->databricks-automl==0.1.dev0) (0.2.5)
Requirement already satisfied: ptyprocess>=0.5 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from pexpect>4.3; sys_platform != "win32"->ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.6.3->databricks-automl==0.1.dev0) (0.6.0)
Requirement already satisfied: parso<0.8.0,>=0.7.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from jedi>=0.10->ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.6.3->databricks-automl==0.1.dev0) (0.7.0)
Requirement already satisfied: oauthlib>=3.0.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from requests-oauthlib>=0.5.0->msrest>=0.6.18->azure-storage-blob>=12.0.0->mlflow->databricks-automl==0.1.dev0) (3.1.0)
Requirement already satisfied: pycparser in /local_disk0/.ephemeral_nfs/envs/pythonEnv-ccd3a263-9f8d-4732-83a3-5b0e6a97d252/lib/python3.8/site-packages (from cffi!=1.11.3,>=1.8->cryptography>=2.1.4->azure-storage-blob>=12.0.0->mlflow->databricks-automl==0.1.dev0) (2.20)
Building wheels for collected packages: alembic, prometheus-flask-exporter, pandocfilters, pyrsistent
Building wheel for alembic (setup.py): started
Building wheel for alembic (setup.py): finished with status 'done'
Created wheel for alembic: filename=alembic-1.4.1-py2.py3-none-any.whl size=158155 sha256=9da80875bfe429dccf49c49946d15bbac3834f376f2b12bd520f67fbce3d3c39
Stored in directory: /home/root/.cache/pip/wheels/9d/de/6d/ca8d461ec29e010b1267d7353d0b058819770f7680bb9360e4
Building wheel for prometheus-flask-exporter (setup.py): started
Building wheel for prometheus-flask-exporter (setup.py): finished with status 'done'
Created wheel for prometheus-flask-exporter: filename=prometheus_flask_exporter-0.18.1-py3-none-any.whl size=17157 sha256=54c5c966a261d22b3e536c6b2472d1ee141fa8d2ab07009e078574efeb857a72
Stored in directory: /home/root/.cache/pip/wheels/12/1a/8d/0c016e06370d07f82def661b6cb7d91d4e6b4ff7f2982e9f2c
Building wheel for pandocfilters (setup.py): started
Building wheel for pandocfilters (setup.py): finished with status 'done'
Created wheel for pandocfilters: filename=pandocfilters-1.4.3-py3-none-any.whl size=7991 sha256=e0e60e328ef1cc02211e0ea76c352bcc4176ad066d34396c366054452a1f04e8
Stored in directory: /home/root/.cache/pip/wheels/fc/39/52/8d6f3cec1cca4ceb44d658427c35711b19d89dbc4914af657f
Building wheel for pyrsistent (setup.py): started
Building wheel for pyrsistent (setup.py): finished with status 'done'
Created wheel for pyrsistent: filename=pyrsistent-0.17.3-cp38-cp38-linux_x86_64.whl size=119735 sha256=b7b2919659da0b1a3c7a4b919b9a598d79c215ae2f3d8c9188deb381721e070b
Stored in directory: /home/root/.cache/pip/wheels/3d/22/08/7042eb6309c650c7b53615d5df5cc61f1ea9680e7edd3a08d2
Successfully built alembic prometheus-flask-exporter pandocfilters pyrsistent
Installing collected packages: pyrsistent, jsonschema, nbformat, webencodings, bleach, mistune, pandocfilters, defusedxml, testpath, nbconvert, jupyter-client, ipykernel, argon2-cffi, Send2Trash, terminado, prometheus-client, notebook, widgetsnbextension, jupyterlab-widgets, ipywidgets, idna, requests, databricks-automl, sqlalchemy, alembic, prometheus-flask-exporter
Attempting uninstall: jupyter-client
Found existing installation: jupyter-client 6.1.7
Uninstalling jupyter-client-6.1.7:
Successfully uninstalled jupyter-client-6.1.7
Attempting uninstall: ipykernel
Found existing installation: ipykernel 5.3.4
Uninstalling ipykernel-5.3.4:
Successfully uninstalled ipykernel-5.3.4
Attempting uninstall: idna
Found existing installation: idna 2.10
Uninstalling idna-2.10:
Successfully uninstalled idna-2.10
Attempting uninstall: requests
Found existing installation: requests 2.24.0
Uninstalling requests-2.24.0:
Successfully uninstalled requests-2.24.0
ERROR: After October 2020 you may experience errors when installing or updating packages. This is because pip will change the way that it resolves dependency conflicts.
We recommend you use --use-feature=2020-resolver to test your packages with the new resolver before it becomes the default.
aiohttp 3.6.3 requires yarl<1.6.0,>=1.0, but you'll have yarl 1.6.3 which is incompatible.
notebook 6.2.0 requires tornado>=6.1, but you'll have tornado 6.0.4 which is incompatible.
Successfully installed Send2Trash-1.5.0 alembic-1.4.1 argon2-cffi-20.1.0 bleach-3.3.0 databricks-automl-0.1.dev0 defusedxml-0.6.0 idna-2.8 ipykernel-5.1.4 ipywidgets-7.6.3 jsonschema-3.2.0 jupyter-client-5.3.4 jupyterlab-widgets-1.0.0 mistune-0.8.4 nbconvert-5.6.1 nbformat-5.0.4 notebook-6.2.0 pandocfilters-1.4.3 prometheus-client-0.9.0 prometheus-flask-exporter-0.18.1 pyrsistent-0.17.3 requests-2.22.0 sqlalchemy-1.3.23 terminado-0.9.2 testpath-0.4.4 webencodings-0.5.1 widgetsnbextension-3.5.1
Python interpreter will be restarted.
schema = StructType([
StructField("age", DoubleType(), False),
StructField("workclass", StringType(), False),
StructField("fnlwgt", DoubleType(), False),
StructField("education", StringType(), False),
StructField("education_num", DoubleType(), False),
StructField("marital_status", StringType(), False),
StructField("occupation", StringType(), False),
StructField("relationship", StringType(), False),
StructField("race", StringType(), False),
StructField("sex", StringType(), False),
StructField("capital_gain", DoubleType(), False),
StructField("capital_loss", DoubleType(), False),
StructField("hours_per_week", DoubleType(), False),
StructField("native_country", StringType(), False),
StructField("income", StringType(), False)
])
input_df = spark.read.format("csv").schema(schema).load("/databricks-datasets/adult/adult.data")
summary = databricks.automl.classify(train_df, target_col='income', data_dir='dbfs:/automl/adult', timeout_minutes=30)
To see analysis of your data while training completes, open the data exploration notebook here:
https://e2-dogfood.staging.cloud.databricks.com/?o=6051921418418893#notebook/96784558541322
**********************************************************************************************************
Trials for training the dataset have been kicked off.
You can track the completed trials in the MLflow experiment here:
https://e2-dogfood.staging.cloud.databricks.com/?o=6051921418418893#mlflow/experiments/96784558541319/s?orderByKey=metrics.%60val_f1_score%60&orderByAsc=false
Notebooks that generate the trials can be edited to tweak the setup, add hyperparameters and re-run the trials.
All re-run notebooks will log the trials under the same experiment.
Generated notebooks contain instructions to load models from your favorite trials.
**********************************************************************************************************
0
0%| | 0/20 [00:00<?, ?trial/s, best loss=?]
5%|▌ | 1/20 [00:32<10:12, 32.25s/trial, best loss: -0.830889053903534]
15%|█▌ | 3/20 [00:39<06:41, 23.63s/trial, best loss: -0.830889053903534]
20%|██ | 4/20 [00:40<04:29, 16.84s/trial, best loss: -0.8590671548371503]
25%|██▌ | 5/20 [00:51<03:46, 15.09s/trial, best loss: -0.8590671548371503]
30%|███ | 6/20 [00:53<02:36, 11.16s/trial, best loss: -0.8590671548371503]
35%|███▌ | 7/20 [00:54<01:45, 8.12s/trial, best loss: -0.8590671548371503]
40%|████ | 8/20 [00:56<01:15, 6.28s/trial, best loss: -0.8590671548371503]
50%|█████ | 10/20 [00:57<00:45, 4.55s/trial, best loss: -0.8590671548371503]
60%|██████ | 12/20 [00:58<00:26, 3.33s/trial, best loss: -0.863204097133928]
65%|██████▌ | 13/20 [00:59<00:18, 2.63s/trial, best loss: -0.863204097133928]
70%|███████ | 14/20 [01:00<00:12, 2.14s/trial, best loss: -0.863204097133928]
75%|███████▌ | 15/20 [01:02<00:10, 2.10s/trial, best loss: -0.863204097133928]
80%|████████ | 16/20 [01:03<00:07, 1.77s/trial, best loss: -0.863204097133928]
85%|████████▌ | 17/20 [01:07<00:07, 2.44s/trial, best loss: -0.863204097133928]
90%|█████████ | 18/20 [01:09<00:04, 2.31s/trial, best loss: -0.863204097133928]
95%|█████████▌| 19/20 [01:11<00:02, 2.22s/trial, best loss: -0.863204097133928]
100%|██████████| 20/20 [01:12<00:00, 1.85s/trial, best loss: -0.863204097133928]
100%|██████████| 20/20 [01:12<00:00, 3.61s/trial, best loss: -0.863204097133928]
help(summary)
Help on AutoClassificationSummary in module databricks.automl.result object:
class AutoClassificationSummary(builtins.object)
| AutoClassificationSummary(experiment: mlflow.entities.experiment.Experiment, trials: List[databricks.automl.result.TrialInfo])
|
| Summary of an AutoML run, including the MLflow experiment and list of detailed summaries for each trial.
|
| The MLflow experiment contains high level information, such as the root artifact location, experiment ID,
| and experiment tags. The list of trials contains detailed summaries of each trial, such as the notebook and model
| location, training parameters, and overall metrics.
|
| Example usage:
| >>> summary.experiment.experiment_id
| 32639121
| >>> len(summary.trials)
| 10
| >>> print(summary.best_trial)
| Model: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
| max_depth=3, max_features=None, max_leaf_nodes=None,
| min_impurity_decrease=0.0, min_impurity_split=None,
| ...
| Model path: dbfs:/databricks/mlflow-tracking/32639121/7ff5e517fd524f30a77b777f5be46d24/artifacts/model
| Preprocessors: [('onehot', OneHotEncoder(categories='auto', drop=None, dtype=<class 'numpy.float64'>,
| handle_unknown='ignore', sparse=True), ['col2', 'col3'])]
| Training duration: 0.056 minutes
| Weighted F1 score: 0.901
| >>> best_model = summary.best_trial.load_model()
| >>> best_model.predict(data)
| array([1, 0, 1])
|
| Methods defined here:
|
| __init__(self, experiment: mlflow.entities.experiment.Experiment, trials: List[databricks.automl.result.TrialInfo])
| :param experiment: MLflow experiment object for AutoML run
| :param trials: List of TrialInfos for all trials, sorted descending by evaluation metric (best first)
|
| __str__(self) -> str
| Returns a string with a detailed summary of the best trial as well as statistics about the entire experiment.
|
| Example usage:
| >>> print(summary)
| Overall summary:
| Experiment ID: 32646004
| Number of trials: 10
| F1 distribution: min: 0.497, median: 0.612, max: 0.956
| Best trial:
| Model: DecisionTreeClassifier
| Model path: dbfs:/databricks/mlflow-tracking/32646004/3d6d726079a4439fb1bc687295f77da8/artifacts/model
| Preprocessors: None
| Training duration: 0.028 minutes
| Weighted F1 score: 0.952
|
| ----------------------------------------------------------------------
| Readonly properties defined here:
|
| best_trial
| The trial corresponding to the best performing model of all completed trials.
|
| experiment
| The MLflow experiment object.
|
| f1_distribution
| The distribution of F1 scores across trials.
|
| trials
| The list of detailed summaries for each trial.
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
AutoML Usage Example
Requirements
Cluster running Databricks Runtime 8.0 ML or above.