array_min
Returns the minimum value of the array.
Syntax
Python
from pyspark.sql import functions as sf
sf.array_min(col)
Parameters
Parameter | Type | Description |
|---|---|---|
|
| The name of the column or an expression that represents the array. |
Returns
pyspark.sql.Column: A new column that contains the minimum value of each array.
Examples
Example 1: Basic usage with integer array
Python
from pyspark.sql import functions as sf
df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data'])
df.select(sf.array_min(df.data)).show()
Output
+---------------+
|array_min(data)|
+---------------+
| 1|
| -1|
+---------------+
Example 2: Usage with string array
Python
from pyspark.sql import functions as sf
df = spark.createDataFrame([(['apple', 'banana', 'cherry'],)], ['data'])
df.select(sf.array_min(df.data)).show()
Output
+---------------+
|array_min(data)|
+---------------+
| apple|
+---------------+
Example 3: Usage with mixed type array
Python
from pyspark.sql import functions as sf
df = spark.createDataFrame([(['apple', 1, 'cherry'],)], ['data'])
df.select(sf.array_min(df.data)).show()
Output
+---------------+
|array_min(data)|
+---------------+
| 1|
+---------------+
Example 4: Usage with array of arrays
Python
from pyspark.sql import functions as sf
df = spark.createDataFrame([([[2, 1], [3, 4]],)], ['data'])
df.select(sf.array_min(df.data)).show()
Output
+---------------+
|array_min(data)|
+---------------+
| [2, 1]|
+---------------+
Example 5: Usage with empty array
Python
from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
schema = StructType([
StructField("data", ArrayType(IntegerType()), True)
])
df = spark.createDataFrame([([],)], schema=schema)
df.select(sf.array_min(df.data)).show()
Output
+---------------+
|array_min(data)|
+---------------+
| NULL|
+---------------+