Skip to main content

log

If there is only one argument, then this takes the natural logarithm of the argument. Supports Spark Connect.

For the corresponding Databricks SQL function, see log function.

Syntax

Python
from pyspark.databricks.sql import functions as dbf

dbf.log(arg1=<arg1>, arg2=<arg2>)

Parameters

Parameter

Type

Description

arg1

pyspark.sql.Column, str or float

base number or actual number (in this case base is e)

arg2

pyspark.sql.Column, str or float, optional

number to calculate logariphm for.

Returns

pyspark.sql.Column: logariphm of given value.

Examples

Python
from pyspark.databricks.sql import functions as dbf
df = spark.sql("SELECT * FROM VALUES (1), (2), (4) AS t(value)")
df.select("*", dbf.log(2.0, df.value)).show()
Output
+-----+---------------+
|value|LOG(2.0, value)|
+-----+---------------+
| 1| 0.0|
| 2| 1.0|
| 4| 2.0|
+-----+---------------+

Python
from pyspark.databricks.sql import functions as dbf
df = spark.sql("SELECT * FROM VALUES (1), (2), (0), (-1), (NULL) AS t(value)")
df.select("*", dbf.log(3.0, df.value)).show()
Output
+-----+------------------+
|value| LOG(3.0, value)|
+-----+------------------+
| 1| 0.0|
| 2|0.6309297535714...|
| 0| NULL|
| -1| NULL|
| NULL| NULL|
+-----+------------------+