make_timestamp_ltz
Create the current timestamp with local time zone from years, months, days, hours, mins, secs and timezone fields. If the configuration spark.sql.ansi.enabled is false, the function returns NULL on invalid inputs. Otherwise, it will throw an error instead.
Syntax
from pyspark.databricks.sql import functions as dbf
dbf.make_timestamp_ltz(years=<years>, months=<months>, days=<days>, hours=<hours>, mins=<mins>, secs=<secs>, timezone=<timezone>)
Parameters
Parameter | Type | Description |
|---|---|---|
|
| The year to represent, from 1 to 9999 |
|
| The month-of-year to represent, from 1 (January) to 12 (December) |
|
| The day-of-month to represent, from 1 to 31 |
|
| The hour-of-day to represent, from 0 to 23 |
|
| The minute-of-hour to represent, from 0 to 59 |
|
| The second-of-minute and its micro-fraction to represent, from 0 to 60. The value can be either an integer like 13 , or a fraction like 13.123. If the sec argument equals to 60, the seconds field is set to 0 and 1 minute is added to the final timestamp. |
|
| The time zone identifier. For example, CET, UTC and etc. |
Returns
pyspark.sql.Column: A new column that contains a current timestamp.
Examples
spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles")
from pyspark.databricks.sql import functions as dbf
df = spark.createDataFrame([[2014, 12, 28, 6, 30, 45.887, 'CET']],
['year', 'month', 'day', 'hour', 'min', 'sec', 'tz'])
df.select(
dbf.make_timestamp_ltz(df.year, df.month, 'day', df.hour, df.min, df.sec, 'tz')
).show(truncate=False)
df = spark.createDataFrame([[2014, 12, 28, 6, 30, 45.887, 'CET']],
['year', 'month', 'day', 'hour', 'min', 'sec', 'tz'])
df.select(
dbf.make_timestamp_ltz(df.year, df.month, 'day', df.hour, df.min, df.sec)
).show(truncate=False)
spark.conf.unset("spark.sql.session.timeZone")