map_values
Returns an unordered array containing the values of the map.
Syntax
Python
from pyspark.sql import functions as sf
sf.map_values(col)
Parameters
Parameter | Type | Description |
|---|---|---|
|
| Name of column or expression |
Returns
pyspark.sql.Column: Values of the map as an array.
Examples
Example 1: Extracting values from a simple map
Python
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, 'a', 2, 'b') as data")
df.select(sf.sort_array(sf.map_values("data"))).show()
Output
+----------------------------------+
|sort_array(map_values(data), true)|
+----------------------------------+
| [a, b]|
+----------------------------------+
Example 2: Extracting values from a map with complex values
Python
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, array('a', 'b'), 2, array('c', 'd')) as data")
df.select(sf.sort_array(sf.map_values("data"))).show()
Output
+----------------------------------+
|sort_array(map_values(data), true)|
+----------------------------------+
| [[a, b], [c, d]]|
+----------------------------------+
Example 3: Extracting values from a map with null values
Python
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, null, 2, 'b') as data")
df.select(sf.sort_array(sf.map_values("data"))).show()
Output
+----------------------------------+
|sort_array(map_values(data), true)|
+----------------------------------+
| [NULL, b]|
+----------------------------------+
Example 4: Extracting values from a map with duplicate values
Python
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, 'a', 2, 'a') as data")
df.select(sf.map_values("data")).show()
Output
+----------------+
|map_values(data)|
+----------------+
| [a, a]|
+----------------+
Example 5: Extracting values from an empty map
Python
from pyspark.sql import functions as sf
df = spark.sql("SELECT map() as data")
df.select(sf.map_values("data")).show()
Output
+----------------+
|map_values(data)|
+----------------+
| []|
+----------------+