Skip to main content

min

Returns the minimum value of the expression in a group.

Syntax

Python
from pyspark.sql import functions as sf

sf.min(col)

Parameters

Parameter

Type

Description

col

pyspark.sql.Column or column name

The target column on which the minimum value is computed.

Returns

pyspark.sql.Column: A column that contains the minimum value computed.

Examples

Example 1: Compute the minimum value of a numeric column

Python
import pyspark.sql.functions as sf
df = spark.range(10)
df.select(sf.min(df.id)).show()
Output
+-------+
|min(id)|
+-------+
| 0|
+-------+

Example 2: Compute the minimum value of a string column

Python
import pyspark.sql.functions as sf
df = spark.createDataFrame([("Alice",), ("Bob",), ("Charlie",)], ["name"])
df.select(sf.min("name")).show()
Output
+---------+
|min(name)|
+---------+
| Alice|
+---------+

Example 3: Compute the minimum value of a column with null values

Python
import pyspark.sql.functions as sf
df = spark.createDataFrame([(1,), (None,), (3,)], ["value"])
df.select(sf.min("value")).show()
Output
+----------+
|min(value)|
+----------+
| 1|
+----------+

Example 4: Compute the minimum value of a column in a grouped DataFrame

Python
import pyspark.sql.functions as sf
df = spark.createDataFrame([("Alice", 1), ("Alice", 2), ("Bob", 3)], ["name", "value"])
df.groupBy("name").agg(sf.min("value")).show()
Output
+-----+----------+
| name|min(value)|
+-----+----------+
|Alice| 1|
| Bob| 3|
+-----+----------+

Example 5: Compute the minimum value of a column in a DataFrame with multiple columns

Python
import pyspark.sql.functions as sf
df = spark.createDataFrame(
[("Alice", 1, 100), ("Bob", 2, 200), ("Charlie", 3, 300)],
["name", "value1", "value2"])
df.select(sf.min("value1"), sf.min("value2")).show()
Output
+-----------+-----------+
|min(value1)|min(value2)|
+-----------+-----------+
| 1| 100|
+-----------+-----------+