percentile
Returns the exact percentile(s) of numeric column expr at the given percentage(s) with value range in [0.0, 1.0].
Syntax
Python
from pyspark.sql import functions as sf
sf.percentile(col, percentage, frequency=1)
Parameters
Parameter | Type | Description |
|---|---|---|
|
| The numeric column. |
|
| Percentage in decimal (must be between 0.0 and 1.0). |
|
| A positive numeric literal which controls frequency (default: 1). |
Returns
pyspark.sql.Column: the exact percentile of the numeric column.
Examples
Example 1: Calculate multiple percentiles
Python
from pyspark.sql import functions as sf
key = (sf.col("id") % 3).alias("key")
value = (sf.randn(42) + key * 10).alias("value")
df = spark.range(0, 1000, 1, 1).select(key, value)
df.select(
sf.percentile("value", [0.25, 0.5, 0.75], sf.lit(1))
).show(truncate=False)
Output
+--------------------------------------------------------+
|percentile(value, array(0.25, 0.5, 0.75), 1) |
+--------------------------------------------------------+
|[0.7441991494121..., 9.9900713756..., 19.33740203080...]|
+--------------------------------------------------------+
Example 2: Calculate percentile by group
Python
from pyspark.sql import functions as sf
key = (sf.col("id") % 3).alias("key")
value = (sf.randn(42) + key * 10).alias("value")
df = spark.range(0, 1000, 1, 1).select(key, value)
df.groupBy("key").agg(
sf.percentile("value", sf.lit(0.5), sf.lit(1))
).sort("key").show()
Output
+---+-------------------------+
|key|percentile(value, 0.5, 1)|
+---+-------------------------+
| 0| -0.03449962216667...|
| 1| 9.990389751837...|
| 2| 19.967859769284...|
+---+-------------------------+