regr_avgy
Aggregate function: returns the average of the dependent variable for non-null pairs in a group, where y is the dependent variable and x is the independent variable.
For the corresponding Databricks SQL function, see regr_avgy aggregate function.
Syntax
Python
import pyspark.sql.functions as sf
sf.regr_avgy(y=<y>, x=<x>)
Parameters
Parameter | Type | Description |
|---|---|---|
|
| The dependent variable. |
|
| The independent variable. |
Returns
pyspark.sql.Column: the average of the dependent variable for non-null pairs in a group.
Examples
Example 1: All pairs are non-null.
Python
import pyspark.sql.functions as sf
df = spark.sql("SELECT * FROM VALUES (1, 2), (2, 2), (2, 3), (2, 4) AS tab(y, x)")
df.select(sf.regr_avgy("y", "x"), sf.avg("y")).show()
Output
+---------------+------+
|regr_avgy(y, x)|avg(y)|
+---------------+------+
| 1.75| 1.75|
+---------------+------+
Example 2: All pairs' x values are null.
Python
import pyspark.sql.functions as sf
df = spark.sql("SELECT * FROM VALUES (1, null) AS tab(y, x)")
df.select(sf.regr_avgy("y", "x"), sf.avg("y")).show()
Output
+---------------+------+
|regr_avgy(y, x)|avg(y)|
+---------------+------+
| NULL| 1.0|
+---------------+------+
Example 3: All pairs' y values are null.
Python
import pyspark.sql.functions as sf
df = spark.sql("SELECT * FROM VALUES (null, 1) AS tab(y, x)")
df.select(sf.regr_avgy("y", "x"), sf.avg("y")).show()
Output
+---------------+------+
|regr_avgy(y, x)|avg(y)|
+---------------+------+
| NULL| NULL|
+---------------+------+
Example 4: Some pairs' x values are null.
Python
import pyspark.sql.functions as sf
df = spark.sql("SELECT * FROM VALUES (1, 2), (2, null), (2, 3), (2, 4) AS tab(y, x)")
df.select(sf.regr_avgy("y", "x"), sf.avg("y")).show()
Output
+------------------+------+
| regr_avgy(y, x)|avg(y)|
+------------------+------+
|1.6666666666666...| 1.75|
+------------------+------+
Example 5: Some pairs' x or y values are null.
Python
import pyspark.sql.functions as sf
df = spark.sql("SELECT * FROM VALUES (1, 2), (2, null), (null, 3), (2, 4) AS tab(y, x)")
df.select(sf.regr_avgy("y", "x"), sf.avg("y")).show()
Output
+---------------+------------------+
|regr_avgy(y, x)| avg(y)|
+---------------+------------------+
| 1.5|1.6666666666666...|
+---------------+------------------+