Skip to main content

sum

Returns the sum of all values in the expression.

Syntax

Python
from pyspark.sql import functions as sf

sf.sum(col)

Parameters

Parameter

Type

Description

col

pyspark.sql.Column or column name

Target column to compute on.

Returns

pyspark.sql.Column: the column for computed results.

Examples

Example 1: Calculating the sum of values in a column

Python
from pyspark.sql import functions as sf
df = spark.range(10)
df.select(sf.sum(df["id"])).show()
Output
+-------+
|sum(id)|
+-------+
| 45|
+-------+

Example 2: Using a plus expression together to calculate the sum

Python
from pyspark.sql import functions as sf
df = spark.createDataFrame([(1, 2), (3, 4)], ["A", "B"])
df.select(sf.sum(sf.col("A") + sf.col("B"))).show()
Output
+------------+
|sum((A + B))|
+------------+
| 10|
+------------+

Example 3: Calculating the summation of ages with None

Python
import pyspark.sql.functions as sf
df = spark.createDataFrame([(1982, None), (1990, 2), (2000, 4)], ["birth", "age"])
df.select(sf.sum("age")).show()
Output
+--------+
|sum(age)|
+--------+
| 6|
+--------+