Skip to main content

to_timestamp

Converts a column into TimestampType using the optionally specified format. Specify formats according to datetime pattern. By default, it follows casting rules to TimestampType if the format is omitted. Equivalent to col.cast("timestamp").

For the corresponding Databricks SQL function, see to_timestamp function.

Syntax

Python
import pyspark.sql.functions as sf

sf.to_timestamp(col=<col>)

# With format
sf.to_timestamp(col=<col>, format=<format>)

Parameters

Parameter

Type

Description

col

pyspark.sql.Column or str

Column values to convert.

format

str

Optional. Format to use to convert timestamp values.

Returns

pyspark.sql.Column: timestamp value as pyspark.sql.types.TimestampType type.

Examples

Example 1: Convert string to a timestamp.

Python
import pyspark.sql.functions as sf
df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t'])
df.select(sf.to_timestamp(df.t)).show()
Output
+-------------------+
| to_timestamp(t)|
+-------------------+
|1997-02-28 10:30:00|
+-------------------+

Example 2: Convert string to a timestamp with a format.

Python
import pyspark.sql.functions as sf
df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t'])
df.select(sf.to_timestamp(df.t, 'yyyy-MM-dd HH:mm:ss')).show()
Output
+------------------------------------+
|to_timestamp(t, yyyy-MM-dd HH:mm:ss)|
+------------------------------------+
| 1997-02-28 10:30:00|
+------------------------------------+