to_timestamp
Converts a column into TimestampType using the optionally specified format. Specify formats according to datetime pattern. By default, it follows casting rules to TimestampType if the format is omitted. Equivalent to col.cast("timestamp").
For the corresponding Databricks SQL function, see to_timestamp function.
Syntax
Python
import pyspark.sql.functions as sf
sf.to_timestamp(col=<col>)
# With format
sf.to_timestamp(col=<col>, format=<format>)
Parameters
Parameter | Type | Description |
|---|---|---|
|
| Column values to convert. |
|
| Optional. Format to use to convert timestamp values. |
Returns
pyspark.sql.Column: timestamp value as pyspark.sql.types.TimestampType type.
Examples
Example 1: Convert string to a timestamp.
Python
import pyspark.sql.functions as sf
df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t'])
df.select(sf.to_timestamp(df.t)).show()
Output
+-------------------+
| to_timestamp(t)|
+-------------------+
|1997-02-28 10:30:00|
+-------------------+
Example 2: Convert string to a timestamp with a format.
Python
import pyspark.sql.functions as sf
df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t'])
df.select(sf.to_timestamp(df.t, 'yyyy-MM-dd HH:mm:ss')).show()
Output
+------------------------------------+
|to_timestamp(t, yyyy-MM-dd HH:mm:ss)|
+------------------------------------+
| 1997-02-28 10:30:00|
+------------------------------------+