%md This notebook should only be run in a Databricks Job, as part of MLflow 3.0 Deployment Jobs.
This notebook should only be run in a Databricks Job, as part of MLflow 3.0 Deployment Jobs.
2
dbutils.widgets.text("model_name", "") dbutils.widgets.text("model_version", "")
3
model_name = dbutils.widgets.get("model_name") model_version = dbutils.widgets.get("model_version") # TODO: Enter serving endpoint name serving_endpoint_name = model_name.replace('.', '-') + "-serving-endpoint"
4
from databricks.sdk import WorkspaceClient from databricks.sdk.service.serving import ( ServedEntityInput, EndpointCoreConfigInput ) from databricks.sdk.errors import ResourceDoesNotExist w = WorkspaceClient() # Assumes DATABRICKS_HOST and DATABRICKS_TOKEN are set served_entities=[ ServedEntityInput( entity_name=model_name, entity_version=model_version, workload_size="Small", scale_to_zero_enabled=True ) ] # Update serving endpoint if it already exists, otherwise create the serving endpoint try: w.serving_endpoints.update_config(name=serving_endpoint_name, served_entities=served_entities) except ResourceDoesNotExist: w.serving_endpoints.create(name=serving_endpoint_name, config=EndpointCoreConfigInput(served_entities=served_entities))