Pular para o conteúdo principal

Agentes AI não conversacionais usando MLflow

Agentes não conversacionais processam entradas estruturadas para produzir saídas específicas sem manter o estado da conversa. Cada solicitação é independente e autossuficiente, tornando esses agentes ideais para operações específicas, como classificação de documentos, extração de dados, análise de lotes e resposta a perguntas estruturadas.

Diferentemente dos agentes conversacionais que gerenciam diálogos com múltiplas interações, os agentes não conversacionais se concentram em executar tarefas bem definidas de forma eficiente. Essa arquitetura simplificada possibilita taxas de transferência mais elevadas para solicitações independentes.

Você aprenderá como:

  • Criar um agente não conversacional
  • Implementar rastreamento e observabilidade abrangentes do MLflow.
  • implantou o agente para o modelo de operação com coleta automática de rastreamento
  • Configure o monitoramento de produção com os avaliadores MLflow 3.

Requisitos

Dependências:

  • MLflow 3.2.0 ou superior
  • databricks-agentes 1.2.0 ou acima
  • databricks-sdk[openai] para integração LLM
  • Python 3.10 ou superior

Acesso ao espaço de trabalho:

  • Acesso às APIs do Modelo Foundation (default: Claude 3.7 Sonnet, configurável)
  • Acesso a um catálogo e esquema para o registro do modelo AI
Python
%pip install --upgrade mlflow[databricks]==3.6.0 pydantic databricks-sdk[openai] databricks-agents databricks-sdk
%restart_python

Cenário de exemplo

Neste exemplo, o agente processa perguntas estruturadas sobre o conteúdo de documentos financeiros e fornece respostas do tipo sim/não, acompanhadas de justificativas. Neste exemplo simplificado, os usuários fornecem tanto o texto do documento quanto as perguntas diretamente no campo de entrada, eliminando a necessidade de infraestrutura de busca vetorial. Isso demonstra como agentes não conversacionais podem lidar com tarefas bem definidas sem contexto de conversa.

Você pode estender este exemplo para casos de uso em produção integrando ferramentas e recursos adicionais. Exemplos incluem a busca vetorial para recuperação de documentos, ferramentas MCP (Model Context Protocol) para integrações externas ou outros agentes do Databricks, como o Genie, para acesso a dados estruturados.

Configurar a entidade de serviço

Agentes não conversacionais não suportam autenticação automática para gravar rastreamentos do modelo de serviço. Em vez disso, você deve implementar uma integração de rastreamento personalizada do MLflow 3 e lidar com a autenticação manualmente usando uma entidade de serviço.

  1. Crie uma entidade de serviço com credenciais OAuth.
  2. Armazene as credenciais em um Escopo Secreto:
Python
# TODO: Configuration constants - Update these for your environment
CATALOG = "main"
SCHEMA = "default" # Replace with your schema name
SECRET_SCOPE = "<YOUR_SECRET_SCOPE>" # Replace with your secret scope name
DATABRICKS_HOST = (
"https://host.databricks.com" # Replace with your workspace URL
)

# TODO: If you have not yet stored your service principal's OAuth client id and client secret as Databricks secrets,
# uncomment the following code and replace the <client_id> and <client_secret> with your service principal's id and secret.

# from databricks.sdk import WorkspaceClient

# w = WorkspaceClient()
# w.secrets.put_secret(SECRET_SCOPE, "client_id", string_value ="<YOUR_SERVICE_PRINCIPAL_CLIENT_ID>")
# w.secrets.put_secret(SECRET_SCOPE, "client_secret", string_value ="<YOUR_SERVICE_PRINCIPAL_CLIENT_SECRET>")

Configure o experimento MLflow:

  • Crie o experimento se ele não existir.
  • Conceda à entidade de serviço CAN_EDIT permissões para o experimento.
Python
# Mlflow experiment to capture traces
EXPERIMENT_NAME = "/Workspace/Shared/non-conversational"

# LLM Configuration
LLM_MODEL = "databricks-claude-3-7-sonnet" # Change this to use different models

# Model and endpoint names - do not need to be changed
MODEL_NAME = "document_analyser"
ENDPOINT_NAME = "document_analyser_agent"
REGISTERED_MODEL_NAME = f"{CATALOG}.{SCHEMA}.{MODEL_NAME}"

from databricks.sdk import WorkspaceClient
from databricks.sdk.service.ml import ExperimentAccessControlRequest
from databricks.sdk.service.iam import PermissionLevel
import mlflow

# Set experiment and get the experiment object directly
experiment = mlflow.set_experiment(EXPERIMENT_NAME)
experiment_id = experiment.experiment_id

# Fetch the service principal client_id from secret scope
client_id = dbutils.secrets.get(scope=SECRET_SCOPE, key="client_id")

# Set permissions for the SPN which will later write the traces from the serving endpoint
w = WorkspaceClient()
# Set CAN_EDIT permissions for the service principal
w.experiments.set_permissions(
experiment_id=experiment_id,
access_control_list=[
ExperimentAccessControlRequest(
service_principal_name=client_id,
permission_level=PermissionLevel.CAN_EDIT
)
]
)

print(f"✓ CAN_EDIT permissions granted to SPN {client_id[:8]}... for experiment: {experiment_id}")

Formato de entrada e saída

Ao contrário dos agentes conversacionais que usam formatos de mensagens de bate-papo flexíveis, os agentes não conversacionais requerem modelos Pydantic estruturados para entradas e saídas:

  1. Crie esquemas de entrada com todos os campos necessários para a execução da tarefa.
  2. Inclua metadados de rastreamento (trace_id, span_id) nos esquemas de saída para habilitar o registro de feedback.
  3. Projetar resultados que forneçam raciocínio detalhado ou explicações em linha de pensamento, quando apropriado.
  4. Valide os esquemas durante o desenvolvimento para detectar erros antes da implantação.

Formato de entrada (AgentInput)

JSON
{
"document_text": "Document content to analyze...",
"questions": [
{ "text": "Do the documents contain a balance sheet?" },
{ "text": "Do the documents contain an income statement?" },
{ "text": "Do the documents contain a cash flow statement?" }
]
}

Formato de saída (AgentOutput)

JSON
{
"results": [
{
"question_text": "Do the documents contain a balance sheet?",
"answer": "Yes",
"chain_of_thought": "Detailed reasoning for the answer...",
"span_id": "abc123def456"
}
],
"trace_id": "tr-xyz789abc123"
}
  • Entrada estruturada : os usuários fornecem tanto o texto do documento quanto as perguntas em uma única solicitação.
  • Raciocínio Detalhado : Cada resposta inclui uma linha de raciocínio passo a passo.
  • Rastreabilidade : A resposta inclui trace_id e span_id para coleta de feedback.

Construa o agente não conversacional

Crie o agente não conversacional com o rastreamento do MLflow. O agente usa decoradores@mlflow.trace para capturar automaticamente chamadas LLM e o fluxo de solicitação completo para observabilidade total.

Os usuários fornecem tanto o texto do documento quanto as perguntas diretamente no campo de entrada.

Python
%%writefile model.py
import json
import logging
from typing import Optional
import uuid
import os
import sys

from databricks.sdk import WorkspaceClient
import mlflow
from mlflow.pyfunc import PythonModel
from mlflow.tracing import set_destination
from mlflow.tracing.destination import Databricks
from mlflow.entities import SpanType

from pydantic import BaseModel, Field


class Question(BaseModel):
"""Represents a question in the input."""

text: str = Field(..., description="Yes/no question about document content")


class AgentInput(BaseModel):
"""Input model for the document analyser agent."""

document_text: str = Field(..., description="The document text to analyze")
questions: list[Question] = Field(..., description="List of yes/no questions")


class Answer(BaseModel):
"""Represents a structured response from the LLM."""

answer: str = Field(..., description="Yes or No answer")
chain_of_thought: str = Field(..., description="Step-by-step reasoning for the answer")


class AnalysisResult(BaseModel):
"""Represents an analysis result in the output."""

question_text: str = Field(..., description="Original question text")
answer: str = Field(..., description="Yes or No answer")
chain_of_thought: str = Field(..., description="Step-by-step reasoning for the answer")
span_id: str | None = Field(None, description="MLflow span ID for this specific answer (None during offline evaluation)")


class AgentOutput(BaseModel):
"""Output model for the document analyser agent."""

results: list[AnalysisResult] = Field(..., description="List of analysis results")
trace_id: str | None = Field(None, description="MLflow trace ID for user feedback collection (None during offline evaluation)")


class DocumentAnalyser(PythonModel):
"""Non-conversational agent for document analysis using MLflow model serving."""

def __init__(self) -> None:
"""Initialize the document analyser.

Sets up logging configuration, initializes model properties, and prepares
the model for serving.
"""
self._setup_logging()
self.model_name = "document_analyser_v1"
self.logger.debug(f"Initialized {self.model_name}")

def _setup_logging(self) -> None:
"""Set up logging configuration for Model Serving.

Configures a logger that uses stderr for better visibility in Model Serving
environments. Log level can be controlled via MODEL_LOG_LEVEL environment
variable (defaults to INFO).
"""
self.logger = logging.getLogger("ModelLogger")
# Set log level from environment variable or default to INFO
log_level = os.getenv("MODEL_LOG_LEVEL", "INFO").upper()
self.logger.setLevel(getattr(logging, log_level, logging.INFO))
if not self.logger.handlers:
handler = logging.StreamHandler()
handler.setLevel(getattr(logging, log_level, logging.INFO))
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
self.logger.addHandler(handler)

def load_context(self, context) -> None:
"""Load model context and initialize clients.

This method is called once when the model is loaded in the serving environment.
It sets up MLflow tracing destination, initializes the Databricks workspace
client, and configures the OpenAI-compatible client for LLM inference.

Args:
context: MLflow model context containing artifacts and configuration
"""
self.logger.debug("Loading model context")
set_destination(Databricks(experiment_id=os.getenv("MONITORING_EXPERIMENT_ID")))

self.logger.debug("Instantiate workspace client")
self.w = WorkspaceClient()
# You can load any artifacts here if needed
# self.artifacts = context.artifacts

self.logger.debug("Instantiate openai client")
# Get an OpenAI-compatible client configured for Databricks serving endpoints
self.openai_client = self.w.serving_endpoints.get_open_ai_client()

@mlflow.trace(name="answer_question", span_type=SpanType.LLM)
def answer_question(self, question_text: str, document_text: str) -> tuple[object, str | None]:
"""Answer a question using LLM with structured response format.

Uses the OpenAI-compatible client to call a language model with a structured
JSON response format. The LLM analyzes the provided document text and returns
a yes/no answer with reasoning.

Args:
question_text (str): The yes/no question to answer about the document
document_text (str): The document text to analyze

Returns:
tuple: (openai.ChatCompletion, str|None) - LLM response and span_id
"""
# Create a chat completion request with structured response for questions

question_prompt = f"""
You are a document analysis expert. Answer the following yes/no question based on the provided document.

Question: "{question_text}"

Document:
{document_text}

Analyze the document and provide a structured response.
"""

# Create a separate sub-span for the actual OpenAI API call
llm_response = self._call_openai_completion(question_prompt)

# Get the current span ID for this specific answer
current_span = mlflow.get_current_active_span()
span_id = current_span.span_id if current_span is not None else None

return llm_response, span_id

@mlflow.trace(name="openai_completion", span_type=SpanType.LLM)
def _call_openai_completion(self, prompt: str):
"""Make the actual OpenAI API call with its own sub-span.

Args:
prompt (str): The formatted prompt to send to the LLM

Returns:
OpenAI ChatCompletion response
"""
return self.openai_client.chat.completions.create(
model=os.getenv("LLM_MODEL", "databricks-claude-3-7-sonnet"), # Configurable LLM model
messages=[
{
"role": "user",
"content": prompt
}
],
response_format={
"type": "json_schema",
"json_schema": {
"name": "question_response",
"schema": Answer.model_json_schema()
}
}
)

@mlflow.trace(name="document_analysis")
def predict(self, context, model_input: list[AgentInput]) -> list[AgentOutput]:
"""Process document analysis questions with yes/no answers.

Args:
context: MLflow model context
model_input: List of structured inputs containing document text and questions

Returns:
List of AgentOutput with yes/no answers and reasoning
"""
self.logger.debug(f"Processing {len(model_input)} classification request(s)")

# Get the current trace ID for user feedback collection
# Will be None during offline evaluation when no active span exists
current_span = mlflow.get_current_active_span()
trace_id = current_span.trace_id if current_span is not None else None

results = []
for input_data in model_input:
self.logger.debug(f"Number of questions: {len(input_data.questions)}")
self.logger.debug(f"Document length: {len(input_data.document_text)} characters")

analysis_results = []

for question in input_data.questions:
self.logger.debug(f"Processing question: {question.text}")

# Answer the question using LLM with structured response
llm_response, answer_span_id = self.answer_question(question.text, input_data.document_text)

# Parse structured JSON response
try:
response_data = json.loads(llm_response.choices[0].message.content)
answer_obj = Answer(**response_data)
except Exception as e:
self.logger.debug(f"Failed to parse structured response: {e}")
# Fallback to default response
answer_obj = Answer(
answer="No",
chain_of_thought="Unable to process the question due to parsing error."
)

analysis_results.append(AnalysisResult(
question_text=question.text,
answer=answer_obj.answer,
chain_of_thought=answer_obj.chain_of_thought,
span_id=answer_span_id
))

self.logger.debug(f"Generated {len(analysis_results)} analysis results")

results.append(AgentOutput(
results=analysis_results,
trace_id=trace_id
))

return results

mlflow.models.set_model(DocumentAnalyser())

registrar e cadastrar o agente

Antes que o agente possa ser implantado em um endpoint de serviço, ele deve ser conectado a um experimento MLflow e registrado no Unity Catalog.

Python
import os
import mlflow

import json
from mlflow.pyfunc import PythonModel
from pydantic import BaseModel, Field
from model import DocumentAnalyser, AgentInput, Question


# Create example input for signature inference
def create_example_input() -> AgentInput:
"""Create example input for the non-conversational agent."""
return AgentInput(
document_text="Total assets: $2,300,000. Total liabilities: $1,200,000. Shareholder's equity: $1,100,000. Net income for the period was $450,000. Revenues: $1,700,000. Expenses: $1,250,000. Net cash provided by operating activities: $80,000. Cash flows from investing activities: -$20,000",
questions=[
Question(text="Do the documents contain a balance sheet?"),
Question(text="Do the documents contain an income statement?"),
Question(text="Do the documents contain a cash flow statement?"),
],
)


input_example = create_example_input()

with mlflow.start_run(run_name="deploy_non_conversational_agent"):
active_run = mlflow.active_run()
current_experiment_id = active_run.info.experiment_id
# Set environment variables for the model using current notebook experiment
os.environ["MONITORING_EXPERIMENT_ID"] = current_experiment_id
print(
f"✓ Using current notebook experiment ID for tracing: {current_experiment_id}"
)

# Log the non-conversational agent with auto-inferred dependencies
model_info = mlflow.pyfunc.log_model(
name=MODEL_NAME,
python_model="model.py", # Path to the model code file
input_example=[create_example_input().model_dump()],
registered_model_name=REGISTERED_MODEL_NAME,
)

# Set logged model as current active model to associate it with the below evaluation results
mlflow.set_active_model(model_id=mlflow.last_logged_model().model_id)

print(f"✓ Model logged and registered: {REGISTERED_MODEL_NAME}")
print(f"✓ Model version: {model_info.registered_model_version}")

Avalie o agente

Antes de implantar em produção, avalie o desempenho do agente usando a estrutura de avaliação GenAI do MLflow com avaliadores pré-construídos. Alguns sistemas de avaliação exigem um dataset de referência.

Python
import mlflow
import mlflow.genai.datasets
from requests import HTTPError

# Create an evaluation dataset in Unity Catalog
uc_schema = f"{CATALOG}.{SCHEMA}"
evaluation_dataset_table_name = "document_analyser_eval"

try:
# Try to create a new evaluation dataset
eval_dataset = mlflow.genai.datasets.create_dataset(
uc_table_name=f"{uc_schema}.{evaluation_dataset_table_name}",
)
print(f"✓ Created evaluation dataset: {uc_schema}.{evaluation_dataset_table_name}")
except HTTPError as e:
# Check if it's a TABLE_ALREADY_EXISTS error
if e.response.status_code == 400 and "TABLE_ALREADY_EXISTS" in str(e):
print(
f"Dataset {uc_schema}.{evaluation_dataset_table_name} already exists, loading existing dataset..."
)
eval_dataset = mlflow.genai.datasets.get_dataset(
uc_table_name=f"{uc_schema}.{evaluation_dataset_table_name}"
)
print(
f"✓ Loaded existing evaluation dataset: {uc_schema}.{evaluation_dataset_table_name}"
)
else:
# Different HTTP error, re-raise
raise

# Define comprehensive test cases with expected facts for ground truth comparison
sample_document = "Total assets: $2,300,000. Total liabilities: $1,200,000. Shareholder's equity: $1,100,000. Net income for the period was $450,000. Revenues: $1,700,000. Expenses: $1,250,000. Net cash provided by operating activities: $80,000. Cash flows from investing activities: -$20,000"

evaluation_examples = [
{
"inputs": {
"document_text": sample_document,
"questions": [{"text": "Do the documents contain a balance sheet?"}],
},
"expectations": {
"expected_facts": [
"answer is Yes",
"balance sheet information",
"total assets mentioned",
"total liabilities mentioned",
"shareholder's equity mentioned",
]
},
},
{
"inputs": {
"document_text": sample_document,
"questions": [{"text": "Do the documents contain an income statement?"}],
},
"expectations": {
"expected_facts": [
"answer is Yes",
"income statement information",
"net income mentioned",
"revenues mentioned",
"expenses mentioned",
]
},
},
{
"inputs": {
"document_text": sample_document,
"questions": [{"text": "Do the documents contain a cash flow statement?"}],
},
"expectations": {
"expected_facts": [
"answer is Yes",
"cash flow information",
"operating activities mentioned",
"investing activities mentioned",
"cash flows mentioned",
]
},
},
{
"inputs": {
"document_text": sample_document,
"questions": [
{
"text": "Do the documents contain information about employee benefits?"
}
],
},
"expectations": {
"expected_facts": [
"answer is No",
"no employee benefits information",
"financial statements focus",
"no HR-related content",
]
},
},
]

# Add the examples to the evaluation dataset
eval_dataset.merge_records(evaluation_examples)
print(f"✓ Added {len(evaluation_examples)} records to evaluation dataset")

# Preview the dataset
df = eval_dataset.to_df()
print(f"✓ Dataset preview - Total records: {len(df)}")
df.display()
Python
import warnings
import mlflow
from mlflow.genai.scorers import (
RelevanceToQuery,
Correctness,
Guidelines,
)

# Suppress harmless threadpoolctl warnings that can appear in Databricks environments
warnings.filterwarnings("ignore", message=".*threadpoolctl.*")
warnings.filterwarnings("ignore", category=UserWarning, module="threadpoolctl")

# Load the logged model for evaluation
model_uri = f"models:/{REGISTERED_MODEL_NAME}/{model_info.registered_model_version}"
print(f"Loading model for evaluation: {model_uri}")

# Load the model as a predict function
loaded_model = mlflow.pyfunc.load_model(model_uri)


def my_app(document_text, questions):
"""Wrapper function for the model prediction."""
# The evaluation dataset's inputs field contains {"document_text": "...", "questions": [...]}
# but the predict_fn parameter names must match the keys in inputs
input_data = {"document_text": document_text, "questions": questions}
return loaded_model.predict([input_data])


# Define scorers for evaluation including ground truth comparison
correctness_scorer = Correctness() # Compares against expected_facts
relevance_scorer = RelevanceToQuery() # Evaluates relevance of response to question
response_schema_scorer = Guidelines(
name="response_schema",
guidelines="The response must be structured JSON with an 'answer' field containing 'Yes' or 'No' and a 'chain_of_thought' field with clear reasoning. There also needs to be a 'question_text' field that contains the question that was asked. All these fields are part of the 'results' array field.",
) # Validates structured output format

# This creates an evaluation run using the MLflow-managed dataset
results = mlflow.genai.evaluate(
data=eval_dataset, # Use the MLflow-managed dataset
predict_fn=my_app,
scorers=[
correctness_scorer,
relevance_scorer,
response_schema_scorer,
],
)

# Access the run ID
print(f"✓ Evaluation completed")
print(f"Evaluation run ID: {results.run_id}")

# Display evaluation results summary
if hasattr(results, "metrics") and results.metrics:
print("\n📊 Evaluation Results Summary:")
for metric_name, metric_value in results.metrics.items():
if isinstance(metric_value, (int, float)):
print(f" • {metric_name}: {metric_value:.3f}")
else:
print(f" • {metric_name}: {metric_value}")
else:
print("✓ Evaluation completed - view detailed results in the evaluation experiment")

# Display link to the evaluation dataset
print(f"\n📊 Evaluation Dataset: {uc_schema}.{evaluation_dataset_table_name}")
print(f"🔗 View dataset in Unity Catalog Data Explorer")

implantado para servir modelo

implantou o agente avaliado em um endpoint de modelo operacional com a variável de ambiente necessária para rastreamento MLflow 3. Isso garante que todas as solicitações de produção sejam rastreadas e registradas automaticamente no experimento MLflow especificado.

Python
import mlflow
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.serving import (
ServedEntityInput,
ServingModelWorkloadType,
EndpointCoreConfigInput,
)

from model import DocumentAnalyser, AgentInput, Question

workspace = WorkspaceClient()

# Use the model version from the logged model
model_version = model_info.registered_model_version

print(f"Using model version: {model_version}")

new_entity = ServedEntityInput(
entity_name=REGISTERED_MODEL_NAME,
entity_version=model_version,
name=f"{MODEL_NAME}-{model_version}",
workload_size="Small",
workload_type=ServingModelWorkloadType.CPU,
scale_to_zero_enabled=True,
environment_vars={
"DATABRICKS_CLIENT_ID": f"{secrets/{SECRET_SCOPE}/client_id}",
"DATABRICKS_CLIENT_SECRET": f"{secrets/{SECRET_SCOPE}/client_secret}",
"DATABRICKS_HOST": DATABRICKS_HOST,
"MLFLOW_TRACKING_URI": "databricks",
"MONITORING_EXPERIMENT_ID": current_experiment_id,
"MODEL_LOG_LEVEL": "INFO",
"LLM_MODEL": LLM_MODEL,
},
)

# Check if endpoint exists and create or update accordingly
try:
# Try to get the existing endpoint
existing_endpoint = workspace.serving_endpoints.get(ENDPOINT_NAME)
print(
f"Endpoint {ENDPOINT_NAME} exists, updating with model version {model_version}"
)

# Update existing endpoint with new model version
workspace.serving_endpoints.update_config(
name=ENDPOINT_NAME, served_entities=[new_entity]
)
print("Endpoint update initiated, waiting for completion...")

# Wait for update to complete
workspace.serving_endpoints.wait_get_serving_endpoint_not_updating(ENDPOINT_NAME)
print("Endpoint updated successfully and is ready")

except Exception as e:
# Endpoint doesn't exist, create it
print(f"Endpoint {ENDPOINT_NAME} doesn't exist, creating new endpoint...")

workspace.serving_endpoints.create(
name=ENDPOINT_NAME,
config=EndpointCoreConfigInput(name=ENDPOINT_NAME, served_entities=[new_entity]),
)
print("Endpoint creation initiated, waiting for completion...")

# Wait for creation to complete
workspace.serving_endpoints.wait_get_serving_endpoint_not_updating(ENDPOINT_NAME)
print("Endpoint created successfully and is ready")

# Final status check
endpoint_status = workspace.serving_endpoints.get(ENDPOINT_NAME)
print(f"Final endpoint status: {endpoint_status.state}")
print(
f"Endpoint URL: https://{DATABRICKS_HOST.replace('https://', '')}/serving-endpoints/{ENDPOINT_NAME}/invocations"
)

Configure o monitoramento da produção usando indicadores.

Configure a avaliação automática de qualidade para tráfego de produção usando os avaliadores do MLflow 3. Os avaliadores analisam automaticamente os registros de rastreamento das solicitações de produção para fornecer monitoramento contínuo da qualidade.

Python
from mlflow.genai.scorers import (
RelevanceToQuery,
Guidelines,
ScorerSamplingConfig,
list_scorers,
get_scorer,
)

# Set the active experiment for scoring (use the current notebook's experiment)
print(f"Setting experiment to: {current_experiment_id}")
mlflow.set_experiment(experiment_id=current_experiment_id)

# Verify the experiment is set correctly
current_experiment = mlflow.get_experiment(current_experiment_id)
print(
f"Current experiment: {current_experiment.name} (ID: {current_experiment.experiment_id})"
)

# Setup scorers for production monitoring
print("Setting up production monitoring scorers...")

# Relevance scorer - always create new to avoid conflicts
relevance_scorer = RelevanceToQuery().register(name="financial_relevance_check")
relevance_scorer = relevance_scorer.start(
sampling_config=ScorerSamplingConfig(sample_rate=0.5)
)
print("✅ Created relevance scorer (50% sampling)")

# Guidelines scorer for response schema validation
response_schema_scorer = Guidelines(
name="response_schema",
guidelines="The response must be structured JSON with an 'answer' field containing 'Yes' or 'No' and a 'chain_of_thought' field with clear reasoning.",
).register(name="response_schema_check")
response_schema_scorer = response_schema_scorer.start(
sampling_config=ScorerSamplingConfig(sample_rate=0.4)
)
print("✅ Created response schema scorer (40% sampling)")

# List all active scorers
print(f"\nActive Scorers in Experiment {current_experiment_id}:")
scorers = list_scorers()
for scorer in scorers:
print(f"• {scorer.name}: {scorer.sample_rate*100}% sampling")

Teste o agente implantado

Teste o agente implantado com entradas de exemplo. Cada solicitação gerará automaticamente rastreamentos do MLflow 3 que capturam todo o fluxo da solicitação, e os avaliadores de produção analisarão esses rastreamentos para monitoramento de qualidade.

Python
from databricks.sdk import WorkspaceClient

# Test the non-conversational agent endpoint using Databricks SDK
workspace = WorkspaceClient()

# Example payload with structured input for the non-conversational agent
test_input = {
"inputs": [
{
"document_text": "Total assets: $2,300,000. Total liabilities: $1,200,000. Shareholder's equity: $1,100,000. Net income for the period was $450,000. Revenues: $1,700,000. Expenses: $1,250,000. Net cash provided by operating activities: $80,000. Cash flows from investing activities: -$20,000",
"questions": [
{"text": "Do the documents contain a balance sheet?"},
{"text": "Do the documents contain an income statement?"},
{"text": "Do the documents contain a cash flow statement?"},
],
}
]
}

# Query the serving endpoint using the workspace client
response = workspace.serving_endpoints.query(
name=ENDPOINT_NAME, inputs=test_input["inputs"]
)

print("Endpoint Response:")
print(response.as_dict())

# Generate MLflow experiment URL
experiment_url = f"{DATABRICKS_HOST}/ml/experiments/{current_experiment_id}"
print(f"\nMLflow Experiment URL: {experiment_url}")

feedback do usuário de registro

Mesmo para agentes não conversacionais, coletar feedback do usuário é crucial para a melhoria contínua. Aplicações de interface com o usuário podem permitir que os usuários aceitem ou rejeitem respostas individuais fornecidas pelo agente. Esse feedback pode então ser registrado no MLflow usando trace_id e span_id incluídos na resposta.

Cenários comuns de feedback para agentes não conversacionais:

  • Feedback de precisão : "Esta resposta (sim/não) estava correta?"
  • Feedback sobre a relevância : "O raciocínio foi apropriado para a pergunta?"
  • Feedback de qualidade : "As evidências apresentadas foram suficientes?"
  • Relatório de erros : "O agente interpretou mal o conteúdo do documento?"

A célula seguinte demonstra como log o feedback para uma resposta individual usando o span_id retornado na resposta.

Python
import mlflow
from mlflow.entities import AssessmentSource

# Get the response from the previous test (extract span_id from first result)
# In a real application, this would come from the API response
response_dict = response.as_dict()
first_prediction = response_dict["predictions"][0]
first_result = first_prediction["results"][0]

# Assert we have the required IDs for feedback logging
assert (
first_result.get("span_id") is not None
), "span_id is required for feedback logging"
assert (
first_prediction.get("trace_id") is not None
), "trace_id is required for feedback logging"

span_id = first_result["span_id"]
trace_id = first_prediction["trace_id"]
question_text = first_result["question_text"]
answer = first_result["answer"]

print(f"Logging feedback for question: '{question_text}'")
print(f"Agent answer: {answer}")
print(f"Span ID: {span_id}")
print(f"Trace ID: {trace_id}")

try:
# Example: User provides positive feedback on this specific answer
mlflow.log_feedback(
trace_id=trace_id,
span_id=span_id,
name="user_feedback",
value=True, # True for positive, False for negative
source=AssessmentSource(source_type="HUMAN"),
rationale="Answer was accurate and well-reasoned",
)

print("✅ Feedback logged successfully!")

except Exception as e:
print(f"Note: Could not log feedback in this environment: {e}")

Próximos passos

Exemplo de caderno

Agentes AI não conversacionais usando MLflow

Open notebook in new tab