Operadores de estado arbitrários legados
A Databricks recomenda o uso de transformWithState
para criar aplicativos personalizados com estado. Consulte Criar um aplicativo personalizado com estado.
Este artigo contém informações para recursos que suportam mapGroupsWithState
, e flatMapGroupsWithState
. Para obter mais detalhes sobre esses operadores, consulte o link.
Especifique o estado inicial para mapGroupsWithState
É possível especificar um estado inicial definido pelo usuário para o processamento stateful da transmissão estruturada usando flatMapGroupsWithState
ou mapGroupsWithState
. Isso permite que o senhor evite o reprocessamento de dados ao iniciar uma transmissão stateful sem um ponto de verificação válido.
def mapGroupsWithState[S: Encoder, U: Encoder](
timeoutConf: GroupStateTimeout,
initialState: KeyValueGroupedDataset[K, S])(
func: (K, Iterator[V], GroupState[S]) => U): Dataset[U]
def flatMapGroupsWithState[S: Encoder, U: Encoder](
outputMode: OutputMode,
timeoutConf: GroupStateTimeout,
initialState: KeyValueGroupedDataset[K, S])(
func: (K, Iterator[V], GroupState[S]) => Iterator[U])
Exemplo de caso de uso que especifica um estado inicial para o operador flatMapGroupsWithState
:
val fruitCountFunc =(key: String, values: Iterator[String], state: GroupState[RunningCount]) => {
val count = state.getOption.map(_.count).getOrElse(0L) + valList.size
state.update(new RunningCount(count))
Iterator((key, count.toString))
}
val fruitCountInitialDS: Dataset[(String, RunningCount)] = Seq(
("apple", new RunningCount(1)),
("orange", new RunningCount(2)),
("mango", new RunningCount(5)),
).toDS()
val fruitCountInitial = initialState.groupByKey(x => x._1).mapValues(_._2)
fruitStream
.groupByKey(x => x)
.flatMapGroupsWithState(Update, GroupStateTimeout.NoTimeout, fruitCountInitial)(fruitCountFunc)
Exemplo de caso de uso que especifica um estado inicial para o operador mapGroupsWithState
:
val fruitCountFunc =(key: String, values: Iterator[String], state: GroupState[RunningCount]) => {
val count = state.getOption.map(_.count).getOrElse(0L) + valList.size
state.update(new RunningCount(count))
(key, count.toString)
}
val fruitCountInitialDS: Dataset[(String, RunningCount)] = Seq(
("apple", new RunningCount(1)),
("orange", new RunningCount(2)),
("mango", new RunningCount(5)),
).toDS()
val fruitCountInitial = initialState.groupByKey(x => x._1).mapValues(_._2)
fruitStream
.groupByKey(x => x)
.mapGroupsWithState(GroupStateTimeout.NoTimeout, fruitCountInitial)(fruitCountFunc)
Teste a função de atualização mapGroupsWithState
A API TestGroupState
permite que o senhor teste a função de atualização de estado usada para Dataset.groupByKey(...).mapGroupsWithState(...)
e Dataset.groupByKey(...).flatMapGroupsWithState(...)
.
A função de atualização de estado usa o estado anterior como entrada usando um objeto do tipo GroupState
. Consulte a documentação de referência do Apache Spark GroupState. Por exemplo:
import org.apache.spark.sql.streaming._
import org.apache.spark.api.java.Optional
test("flatMapGroupsWithState's state update function") {
var prevState = TestGroupState.create[UserStatus](
optionalState = Optional.empty[UserStatus],
timeoutConf = GroupStateTimeout.EventTimeTimeout,
batchProcessingTimeMs = 1L,
eventTimeWatermarkMs = Optional.of(1L),
hasTimedOut = false)
val userId: String = ...
val actions: Iterator[UserAction] = ...
assert(!prevState.hasUpdated)
updateState(userId, actions, prevState)
assert(prevState.hasUpdated)
}