Databricks Feature Store 0.14

Documentation > FeatureStore 0.14.2 documentation

Databricks Feature Store

Python API

Databricks FeatureStoreClient

class databricks.feature_store.client.FeatureStoreClient(feature store_uri: Optional[str] = None, model_registry_uri: Optional[str] =
None)

Bases: object
Client for interacting with the Databricks Feature Store.
Note

Using Databricks FeatureStoreClient for feature tables in Unity Catalog requires version >=0.13.5

create_table(name: str, primary_keys: Union[str, List[str]], df: Optional[pyspark.sql.dataframe.DataFrame] = None, *, timestamp_keys: Union[str,
List[str], None] = None, partition_columns: Union[str, List[str], None] = None, schema: Optional[pyspark.sql.types.StructType] = None, description:
Optional[str] = None, tags: Optional[Dict/[str, str]] = None, **kwargs) — databricks.feature_store.entities.feature_table.FeatureTable

Create and return a feature table with the given name and primary keys.

The returned feature table has the given name and primary keys. Uses the provided schema or the inferred schema of the provided df. If df
is provided, this data will be saved in a Delta table. Supported data types for features are: IntegerType, LongType, FloatType,
DoubleType, StringType, BooleanType, DateType, TimestampType, ShortType, ArrayType, MapType, and BinaryType, and
DecimalType.

https://docs.python.org/3/library/functions.html#object

Parameters: ° name - Afeature table name. For workspace-local feature table, the format is <database_name>.<table_name>, for example
dev.user_features. For feature table in Unity Catalog, the format is <catalog_name>.<schema_name>.<table_name>, for
example ml.dev.user_features.

e primary_keys - The feature table’s primary keys. If multiple columns are required, specify a list of column names, for example
['customer_id', 'region'].
¢ df - Data to insert into this feature table. The schema of df will be used as the feature table schema.

e timestamp_keys -
Columns containing the event time associated with feature value. Timestamp keys should be part of the primary keys. Combined, the
timestamp keys and other primary keys of the feature table uniquely identify the feature value for an entity at a point in time.

Experimental: This argument may change or be removed in a future release without warning.

e partition_columns -
Columns used to partition the feature table. If a list is provided, column ordering in the list will be used for partitioning.

When choosing partition columns for your feature table, use columns that do not have a high cardinality. An ideal strategy would
be such that you expect data in each partition to be at least 1 GB. The most commonly used partition column is a date.

Additional info: Choosing the right partition columns for Delta tables

¢ schema - Feature table schema. Either schema or df must be provided.
¢ description - Description of the feature table.
* tags-

Tags to associate with the feature table.

Available in version >=0.4.1.

Other Parameters:

e path (optional[str])- Pathin asupported filesystem. Defaults to the database location.

The path argument is not supported for tables in Unity Catalog.

register_table(* delta_table: str, primary_keys: Union[str, List[str]], timestamp_keys: Union[str, List[str], None] = None, description: Optional[str] =
None, tags: Optional[Dict[str, str]] = None) — databricks.feature_store.entities.feature_table.FeatureTable

Register an existing Delta table as a feature table with the given primary keys.
This APl is not required if the table is already in Unity Catalog and has primary keys.

The registered feature table has the same name as the Delta table.

Available in version >=0.3.8.

https://bit.ly/3ueXsjv

Parameters: ¢ delta_table - A Delta table name. The table must exist in the metastore. For workspace-local table, the format is
<database_name>.<table_name>, for example dev.user_features. For table in Unity Catalog, the format is
<catalog_name>.<schema_name>.<table_name>, for example ml.dev.user_features.

e primary_keys - The Delta table’s primary keys. If multiple columns are required, specify a list of column names, for example
['customer_id', 'region'].

* timestamp_keys - Columns containing the event time associated with feature value. Timestamp keys should be part of the primary
keys. Combined, the timestamp keys and other primary keys of the feature table uniquely identify the feature value for an entity at a
pointin time.

¢ description - Description of the feature table.

* tags-

Tags to associate with the feature table.

Available in version >=0.4.1.

Returns: A FeatureTable object.

get_table(name: str) — databricks.feature_store.entities.feature_table.FeatureTable
Get a feature table’s metadata.
Parameters: name - A feature table name. For workspace-local feature table, the format is <database_name>.<table_name>, for example

dev.user_features. For feature table in Unity Catalog, the format is <catalog_name>.<schema_name>.<table_name>, for example

ml.dev.user_features.

drop_table(name: str) — None

Experimental: This function may change or be removed in a future release without warning.

Delete the specified feature table. This APl also drops the underlying Delta table.

Available in version >=0.4.1.

Parameters: name - The feature table name. For workspace-local feature table, the format is <database_name>.<table_name>, for example
dev.user_features. For feature table in Unity Catalog, the format is <catalog_name>.<schema_name>.<table_name>, for example

ml.dev.user_features.

Deleting a feature table can lead to unexpected failures in upstream producers and downstream consumers (models, endpoints, and
scheduled jobs). You must delete any existing published online stores separately.

read_table(name: str, **kwargs) — pyspark.sql.dataframe.DataFrame
Read the contents of a feature table.

Parameters: name - A feature table name of the form <database_name>.<table_name>, for example dev.user_features.

Returns: The feature table contents, or an exception will be raised if this feature table does not exist.

write_table(name: str, df: pyspark.sql.dataframe.DataFrame, mode: str = 'merge', checkpoint_location: Optional[str] = None, trigger: Dict[str, Any] =
{'processingTime': '5 seconds'}) — Optional[pyspark.sql.streaming.StreamingQuery]

Writes to a feature table.

If the input DataFrame is streaming, will create a write stream.

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Parameters: ® name - A feature table name. Raises an exception if this feature table does not exist. For workspace-local feature table, the format is
<database_name>.<table_name>, for example dev.user_features. For feature table in Unity Catalog, the format is
<catalog_name>.<schema_name>.<table_name>, for example ml.dev.user_features.

e df - Spark pataFrame with feature data. Raises an exception if the schema does not match that of the feature table.
* mode -
Two supported write modes:
o "overwrite" updatesthe whole table.
o "merge" will upsert the rows in df into the feature table. If d£ contains columns not present in the feature table, these columns
will be added as new features.
¢ checkpoint_location - Sets the Structured Streaming checkpointLocation option. By setting a checkpoint_location, Spark
Structured Streaming will store progress information and intermediate state, enabling recovery after failures. This parameter is only
supported when the argument df is a streaming DataFrame.
e trigger - If df.isStreaming, trigger defines the timing of stream data processing, the dictionary will be unpacked and passed to
DataStreamWriter.trigger asarguments. For example, trigger={'once': True} will resultina call to

DataStreamWriter.trigger (once=True).

Returns: If df.isStreaming, returns a PySpark streamingQuery. None otherwise.

add_data_sources(* feature_table_name: str, source_names: Union[str, List[str]], source_type: str = 'custom’) — None

Experimental: This function may change or be removed in a future release without warning.

Add data sources to the feature table.

Adding data sources is NOT supported for feature tables in Unity Catalog.

Parameters: e feature_table_name - The feature table name.
* source_names - Data source names. For multiple sources, specify a list. If a data source name already exists, it is ignored.
* source_type -
One of the following:
o "table":Tablein format <database_name>.<table_name> and is stored in the metastore (eg Hive).
o "path": Path, egin the Databricks File System (DBFS).
o "custom":Manually added data source, neither a table nor a path.

delete_data_sources(* feature_table_name: str, source_names: Union[str, List[str]]) — None

Experimental: This function may change or be removed in a future release without warning.

Delete data sources from the feature table.

Data sources of all types (table, path, custom) that match the source names will be deleted. Deleting data sources is NOT supported for
feature tables in Unity Catalog.

Parameters: ¢ feature_table_name - The feature table name.

* source_names - Data source names. For multiple sources, specify a list. If a data source name does not exist, it is ignored.

publish_table(name: str, online_store: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec, *, filter_condition:
Optional[str] = None, mode: str = 'merge), streaming: bool = False, checkpoint_location: Optional[str] = None, trigger: Dict[str, Any] = {'processingTime": '5
minutes'}, features: Union[str, List[str], None] = None) — Optional[pyspark.sql.streaming.StreamingQuery]

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.DataStreamWriter.trigger
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.StreamingQuery
https://docs.python.org/3/library/constants.html#None

Publish a feature table to an online store.

Parameters: ° name - Name of the feature table.

¢ online_store - Specification of the online store.

¢ filter_condition - A SQL expression using feature table columns that filters feature rows prior to publishing to the online store. For
example, "dt > '2020-09-10'".Thisisanalogous to running df.filter ora WHERE condition in SQL on a feature table prior to
publishing.

* mode -

Specifies the behavior when data already exists in this feature table in the online store. If "overwrite" mode is used, existing data is
replaced by the new data. If "merge" mode is used, the new data will be merged in, under these conditions:

o If a key exists in the online table but not the offline table, the row in the online table is unmodified.

o If akey exists in the offline table but not the online table, the offline table row is inserted into the online table.

o If a key exists in both the offline and the online tables, the online table row will be updated.

e streaming - If True, streams data to the online store.

¢ checkpoint_location - Sets the Structured Streaming checkpointLocation option. By setting a checkpoint_location, Spark
Structured Streaming will store progress information and intermediate state, enabling recovery after failures. This parameter is only
supported when streaming=True.

e trigger - If streaming=True, trigger defines the timing of stream data processing. The dictionary will be unpacked and passed to
DataStreamWriter.trigger asarguments. Forexample, trigger={'once': True} will resultina call to
DataStreamWriter.trigger (once=True) .

e features -

Specifies the feature column(s) to be published to the online store. The selected features must be a superset of existing online store
features. Primary key columns and timestamp key columns will always be published.

This parameter is only supported when mode="merge" . When features is not set, the whole feature table will be published.

Returns: If streaming=True, returns a PySpark streamingQuery, None otherwise.

drop_online_table(name: str, online_store: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec) — None
Drop a table in an online store.

This API first attempts to make a call to the online store provider to drop the table. If successful, it then deletes the online store from the
feature catalog.

Parameters: * name - Name of feature table associated with online store table to drop.
* online_store - Specification of the online store.

Available in version >=0.12.0

Deleting an online published table can lead to unexpected failures in downstream dependencies. Ensure that the online table being
dropped is no longer used for Model Serving feature lookup or any other use cases.

create_training_set(df: pyspark.sql.dataframe.DataFrame, feature_lookups:
List[Union[databricks.feature_store.entities.feature_lookup.FeatureLookup, databricks.feature_store.entities.feature_function.FeatureFunction]], label:
Union[str, List[str], None], exclude_columns: Optional[List[str]] = None, **kwargs) — databricks.feature_store.training_set.TrainingSet

Create a TrainingSet.

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.DataStreamWriter.trigger
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.streaming.StreamingQuery
https://docs.python.org/3/library/constants.html#None

Parameters: © df-The pataFrame used to join features into.

o feature_lookups -
List of features to use in the TrainingSet. FeatureLookups are joined into the DataFrame, and FeatureFunctions are
computed on-demand.

Note

FeatureFunction is available in version >=0.14.1

e label - Names of column(s) in DataFrame that contain training set labels. To create a training set without a label field, i.e. for
unsupervised training set, specify label = None.
¢ exclude_columns - Names of the columns to drop from the TrainingSet DataFrame.

Returns: A TrainingSet object.

log_model(model: Any, artifact_path: str, *, flavor: module, training_set: Optional[databricks.feature_store.training_set.TrainingSet] = None,
registered_model_name: Optional[str] = None, await_registration_for: int = 300, infer_input_example: bool = False, **kwargs)

Log an MLflow model packaged with feature lookup information.
Note

The pataFrame returned by TrainingSet.load_df () must be used to train the model. If it has been modified (for example data
normalization, add a column, and similar), these modifications will not be applied at inference time, leading to training-serving skew.

Parameters: * model - Model to be saved. This model must be capable of being saved by flavor.save_model. See the MLflow Model API.
o artifact_path - Run-relative artifact path.
¢ flavor - MLflow module to use to log the model. £lavor should have type ModuleType. The module must have a method
save_model , and must support the python_function flavor. For example, ml1flow.sklearn, mlflow.xgboost, and similar.
e training_set - The TrainingSet used to train this model.
* registered_model_name -

Note

Experimental: This argument may change or be removed in a future release without warning.

If given, create a model version under registered_model_name, also creating a registered model if one with the given name does
not exist.

e await_registration_for - Number of seconds to wait for the model version to finish being created and is in READY status. By default,
the function waits for five minutes. Specify 0 or None to skip waiting.
¢ infer_input_example -

Note

Experimental: This argument may change or be removed in a future release without warning.

Automatically log an input example along with the model, using supplied training data. Defaults to False.

Returns: None

score_batch(model_uri: str, df: pyspark.sql.dataframe.DataFrame, result_type: str = 'double’) — pyspark.sql.dataframe.DataFrame
Evaluate the model on the provided pataFrame.
Additional features required for model evaluation will be automatically retrieved from Feature Store.

The model must have been logged with FeatureStoreClient.log_model (), which packages the model with feature metadata. Unless
presentin df, these features will be looked up from Feature Store and joined with df prior to scoring the model.

If a feature is included in df, the provided feature values will be used rather than those stored in Feature Store.

For example, if a model is trained on two features account_creation_date and num_lifetime_purchases,asin:

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://bit.ly/3yzl1r0
https://docs.python.org/3/library/types.html#types.ModuleType
https://mlflow.org/docs/latest/python_api/mlflow.sklearn.html#module-mlflow.sklearn
https://mlflow.org/docs/latest/python_api/mlflow.xgboost.html#module-mlflow.xgboost
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

feature_lookups = [

FeatureLookup (
table_name = 'trust_and_safety.customer_features',
feature_name = 'account_creation_date',
lookup_key = 'customer_id',

).

FeatureLookup(
table_name = 'trust_and_safety.customer_features',
feature_name = 'num_lifetime_purchases',
lookup_key = 'customer_id'

).

with mlflow.start_run():
training_set = fs.create_training_set(
df,
feature_lookups = feature_lookups,
label = 'is_banned',
exclude_columns = ['customer_id"']

fs.log_model(
model,
"model",
flavor=mlflow.sklearn,
training_set=training_set,
registered_model_name="example_model"

Then at inference time, the caller of FeaturestorecClient.score_batch() must passa DataFrame thatincludes customer_id, the
lookup_key specified in the FeatureLookups of the training_set.If the DataFrame containsacolumn account_creation_date,
the values of this column will be used in lieu of those in Feature Store.Asin:

batch_df has columns ['customer_id', 'account_creation_date']
predictions = fs.score_batch(

'models:/example_model/1",

batch_df

Parameters: * model_uri-
The location, in URI format, of the MLflow model logged using FeatureStoreClient.log_model().One of:

© runs:/<mlflow_run_id>/run-relative/path/to/model
© models:/<model_name>/<model_version>

© models:/<model_name>/<stage>

For more information about URI schemes, see Referencing Artifacts.

o df-
The pataFrame to score the model on. Feature Store features will be joined with df prior to scoring the model. df must:

1. Contain columns for lookup keys required to join feature data from Feature Store, as specified in the feature_spec.yaml
artifact.
2. Contain columns for all source keys required to score the model, as specified in the feature_spec.yaml artifact.

3. Not contain a column prediction, which is reserved for the model’s predictions. d£ may contain additional columns.

Streaming DataFrames are not supported.

¢ result_type - The return type of the model. See m1£flow.pyfunc.spark_udf () result_type.

Returns: -
eturns A pataFrame containing:

1. All columns of df.
2. All feature values retrieved from Feature Store.

3. Acolumn prediction containing the output of the model.

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://bit.ly/3wnrseE
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html#mlflow.pyfunc.spark_udf
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

set_feature_table_tag(* table_name: str, key: str, value: str) — None

Create or update a tag associated with the feature table. If the tag with the corresponding key already exists, its value will be overwritten with
the new value.

Note

Available in version >=0.4.1.

Parameters: ¢ table_name - the feature table name
* key - tag key

e value - tagvalue

delete_feature_table_tag(* table_name: str, key: str) — None
Delete the tag associated with the feature table. Deleting a non-existent tag will emit a warning.
Note

Available in version >=0.4.1.

Parameters: ¢ table_name - the feature table name.
* key - the tag key to delete.

Feature Lookup

class databricks.feature_store.entities.feature_lookup.FeatureLookup(table_name: str, lookup_key: Union[str, List[str]], *,
feature_names: Union([str, List[str], None] = None, rename_outputs: Optional[Dict[str, str]] = None, timestamp_lookup_key: Union[str, List[str], None] = None,
lookback_window: Optional[datetime.timedelta] = None, **kwargs)

Bases: databricks.feature_store.entities._feature_store_object._FeatureStoreObject

Value class used to specify a feature to use in a Trainingset.

Parameters: ¢ table_name - Feature table name.

* lookup_key - Key to use when joining this feature table with the pataFrame passed to
FeatureStoreClient.create_training_set().The lookup_key must be the columnsin the DataFrame passed to
FeatureStoreClient.create_training_set().Thetype and order of lookup_key columns in that DataFrame must match the
primary key of the feature table referenced in this FeatureLookup.

¢ feature_names - A single feature name, a list of feature names, or None to lookup all features (excluding primary keys) in the feature table
at the time that the training set is created. If your model requires primary keys as features, you can declare them as independent
FeatureLookups.

¢ rename_outputs - If provided, renames features in the Trainingset returned by of FeatureStoreClient.create training set.

e timestamp_lookup_key -
Key to use when performing point-in-time lookup on this feature table with the pataFrame passed to
FeatureStoreClient.create_training_set().The timestamp_lookup_key must be the columns in the DataFrame passed to
FeatureStoreClient.create_training_set().Thetype of timestamp_lookup_key columns in that DataFrame must match the
type of the timestamp key of the feature table referenced in this FeatureLookup.

Note

Experimental: This argument may change or be removed in a future release without warning.

* lookback_window -
The lookback window to use when performing point-in-time lookup on the feature table with the dataframe passed to
FeatureStoreClient.create_training_set (). Feature Store will retrieve the latest feature value prior to the timestamp specified in
the dataframe’s timestamp_lookup_key and within the lookback_window, or null if no such feature value exists. When set to 0, only
exact matches from the feature table are returned.

Note

Available in version >=0.13.0

¢ feature_name - Feature name. Deprecated as of version 0.3.4. Use feature names.
e output_name - If provided, rename this feature in the output of FeatureStoreClient.create_training_set.Deprecated as of

version 0.3.4. Use rename_outputs.

__init__(table_name: str, lookup_key: Union[str, List[str]], *, feature_names: Union(str, List[str], None] = None, rename_outputs: Optional[Dict[str, str]]
= None, timestamp_lookup_key: Union[str, List[str], None] = None, lookback_window: Optional[datetime.timedelta] = None, **kwargs)

Initialize a FeatureLookup object. See class documentation.

table_name

The table name to use in this FeatureLookup.

lookup_key

The lookup key(s) to use in this FeatureLookup.

feature_name

The feature name to use in this FeatureLookup. Deprecated as of version 0.3.4. Use feature_names.

output_name

The output name to use in this FeatureLookup. Deprecated as of version 0.3.4. Use feature_names.

lookback_window

Alookback window applied only for point-in-time lookups.

Feature Function

class databricks.feature_store.entities.feature_function.FeatureFunction(*, udf name: str, input_bindings: Optional[Dict[str, str]] =

None, output_name: Optional[str] = None)

Bases: databricks.feature_store.entities._feature_store_object._ FeatureStoreObject

Value class used to specify a Python user-defined function (UDF) in Unity Catalog to use in a TrainingSet.

https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Note

FeatureFunction is available in version >=0.14.1

Parameters: * udf_name - The Python UDF name.
¢ input_bindings - Mapping of UDF inputs to features in the Trainingset.

¢ output_name - Output feature name of this FeatureFunction. If empty, defaults to the fully qualified udf_name when evaluated.

__init__(* udf_name: str, input_bindings: Optional[Dict[str, str]] = None, output_name: Optional[str] = None)

Initialize a FeatureFunction object. See class documentation.

udf_name

The name of the Python UDF called by this FeatureFunction.

input_bindings
The input to use for each argument of the Python UDF.
For example:

{"x": "featurel", "y": "inputl"}

output_name

The output name to use for the results of this FeatureFunction. If empty, defaults to the fully qualified udf_name when evaluated.

Training Set

class databricks.feature_store.training_set.TrainingSet(feature_spec: databricks.feature_store.entities.feature_spec.FeatureSpec, df:
pyspark.sql.dataframe.DataFrame, labels: List[str], feature_table_metadata_map: Dict[str, databricks.feature_store.entities.feature_table.FeatureTable],
feature_table_data_map: Dict[str, pyspark.sql.dataframe.DataFrame], uc_function_infos: Dict/[str,
databricks.feature_store.information_schema_spark_client.Functioninfo])

Bases: object

Class that defines TrainingSet objects.

Note

The TrainingSet constructor should not be called directly. Instead, call FeatureStoreClient.create_training set.

load_df£() — pyspark.sql.dataframe.DataFrame
Load a DataFrame.
Return a pataFrame for training.

The returned pataFrame has columns specified in the feature_spec and labels parameters provided in

FeatureStoreClient.create_training_set.

Returns: A pDataFrame for training

Feature Table

Classes

class databricks.feature_store.entities.feature_table.FeatureTable(name, table_id, description, primary_keys, partition_columns,
features, creation_timestamp=None, online_stores=None, notebook_producers=None, job_producers=None, table_data_sources=None,
path_data_sources=None, custom_data_sources=None, timestamp_keys=None, tags=None)

Value class describing one feature table.

This will typically not be instantiated directly, instead the FeatureStoreClient.create_table will create FeatureTable objects.

https://docs.python.org/3/library/functions.html#object
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/2.4.5/api/python/pyspark.sql.html#pyspark.sql.DataFrame

Online Store Spec

class databricks.feature_store.online_store_spec.AmazonRdsMySqlSpec(hostname: str, port: int, user: Optional[str] = None, password:
Optional[str] = None, database_name: Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix:
Optional[str] = None, write_secret_prefix: Optional[str] = None)

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

Class that defines and creates AmazonRdsMySqlSpec objects.

This onlineStoreSpec implementation is intended for publishing features to Amazon RDS MySQL and Aurora (MySQL-compatible edition).

See onlineStoreSpec documentation for more usage information, including parameter descriptions.

Parameters: ® hostname - Hostname to access online store.
® port - Port number to access online store.
* user - Username that has access to the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
e password - Password to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
e database_name - Database name.
¢ table_name - Table name.
e driver_name - Name of custom JDBC driver to access the online store.
e read_secret_prefix - Prefix for read secret.

o write_secret_prefix - Prefix for write secret.

hostname

Hostname to access the online store.

port

Port number to access the online store.

database_name

Database name.

cloud

Define the cloud propert for the data store.

store_type

Define the data store type property.

auth_type()

Publish Auth type.

class databricks.feature_store.online_store_spec.AzureMySqlSpec(hostname: str, port: int, user: Optional[str] = None, password:
Optional[str] = None, database_name: Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix:
Optional[str] = None, write_secret_prefix: Optional[str] = None)

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

Define the AzureMysqlspec class.

This onlineStoreSpec implementation is intended for publishing features to Azure Database for MySQL.

See onlineStoreSpec documentation for more usage information, including parameter descriptions.

Parameters: ® hostname - Hostname to access online store.
e port - Port number to access online store.
* user - Username that has access to the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
* password - Password to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
¢ database_name - Database name.
e table_name - Table name.
e driver_name - Name of custom JDBC driver to access the online store.
¢ read_secret_prefix - Prefix for read secret.

e write_secret_prefix - Prefix for write secret.

hostname

Hostname to access the online store.

port

Port number to access the online store.

database_name

Database name.

cloud

Define the cloud the fature store runs.

store_type

Define the data store type.

auth_type()

Publish Auth type.

class databricks.feature_store.online_store_spec.AzureSqlServerSpec(hostname: str, port: int, user: Optional[str] = None, password:
Optional[str] = None, database_name: Optional[str] = None, table_name: Optional[str] = None, driver_name: Optional[str] = None, read_secret_prefix:
Optional[str] = None, write_secret_prefix: Optional[str] = None)

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec

This onlineStoreSpec implementation is intended for publishing features to Azure SQL Database (SQL Server).

The spec supports SQL Server 2019 and newer.

See onlineStoreSpec documentation for more usage information, including parameter descriptions.

Parameters: * hostname - Hostname to access online store.
e port - Port number to access online store.
* user - Username that has access to the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
e password - Password to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
e database_name - Database name.
e table_name - Table name.
e driver_name - Name of custom JDBC driver to access the online store.
¢ read_secret_prefix - Prefix for read secret.

e write_secret_prefix - Prefix for write secret.

hostname

Hostname to access the online store.

port

Port number to access the online store.

database_name

Database name.

cloud

Define the cloud the fature store runs.

store_type

Define the data store type.

auth_type()

Publish Auth type.

class databricks.feature_store.online_store_spec.AmazonDynamoDBSpec(* region: Optional[str], access_key_id: Optional[str] = None,
secret_access_key: Optional[str] = None, session_token: Optional[str] = None, table_name: Optional[str] = None, read_secret_prefix: Optional[str] = None,
write_secret_prefix: Optional[str] = None, ttl: Optional[datetime.timedelta] = None, endpoint_url: Optional[str] = None)

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec
This onlineStoreSpec implementation is intended for publishing features to Amazon DynamoDB.

If table name is not provided, FeatureStoreClient.publish_table will use the offline store’s database and table name combined as the
online table name.

To use a different table name in the online store, provide a value for the table_name argument.

The expected read or write secrets for DynamoDB for a given {prefix} stringare ${prefix}-access-key-id,

${prefix}-secret-access-key,and ${prefix}-session-token.

If none of the access_key_id, secret_access_key, and write_secret_prefix are passed, the instance profile attached to the cluster will be used to
write to DynamoDB.

AmazonDynamoDBSpec is available in version >=0.3.8.

Instance profile based writes are available in version >=0.4.1.

Parameters: ® region - Region to access online store.
e access_key_id - Access key ID that has access to the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
e secret_access_key - Secret access key to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
e session_token - Session token to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
¢ table_name - Table name.
e read_secret_prefix - Prefix for read secret.
e write_secret_prefix — Prefix for write secret.
e ttl- The time to live for data published to the online store. This attribute is only applicable when publishing time series feature tables. If
the time to live is specified for a time series table, FeatureStoreclient.publish_table () will publish a window of data instead of

the latest snapshot.

access_key_id

databricks.feature_store.online_store_spec.amazon_dynamodb_online_store_spec.AmazonDynamoDBSpec.access_key_id

is deprecated since v0.6.0. This method will be removed in a future release. Use write_secret_prefix instead.

Access key ID that has access to the online store. Property will be empty if write_secret_prefix or the instance profile attached to the
cluster are intended to be used.

secret_access_key

databricks.feature_store.online_store_spec.amazon_dynamodb_online_store_spec.AmazonDynamoDBSpec.secret_access_key

is deprecated since v0.6.0. This method will be removed in a future release. Use write_secret_prefix instead.

Secret access key to access the online store. Property will be empty if write_secret_prefix or the instance profile attached to the cluster
are intended to be used.
session_token
Warning

databricks.feature_store.online_store_spec.amazon_dynamodb_online_store_spec.AmazonDynamoDBSpec.session_token

is deprecated since v0.6.0. This method will be removed in a future release. Use write_secret_prefix instead.

Session token to access the online store. Property will be empty if write_secret_prefix or the instance profile attached to the cluster are
intended to be used.

endpoint_url

Endpoint url of DynamoDB online store, mainly used for testing with LocalStack

cloud

Define the cloud property for the data store.

store_type

Define the data store type.

region

Region to access the online store.

ttl

Time to live attribute for the online store.

auth_type()

Publish Auth type.

class databricks.feature_store.online_store_spec.AzureCosmosDBSpec(*, account uri: str, database_name: Optional[str] = None,
container_name: Optional[str] = None, read_secret_prefix: Optional[str] = None, write_secret_prefix: str)

Bases: databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec
This onlinesStorespec implementation is intended for publishing features to Azure Cosmos DB.

If database_name and container name are not provided, FeatureStoreClient.publish_table will use the offline store’s database and
table name as the Cosmos DB database and container name.

The expected read or write secret for Cosmos DB for a given {prefix} stringis ${prefix}-authorization-key.
The authorization key can be either the Cosmos DB account primary or secondary key.
Note

Available in version >=0.5.0.

Parameters: e account_uri - URI of the Cosmos DB account.
e database_name - Database name.
e container_name - Container name.
¢ read_secret_prefix - Prefix for read secret.
o write_secret_prefix - Prefix for write secret.

account_uri

Account URI of the online store.

database_name

Database name.

container_name

Container name.

cloud

Define the cloud property for the data store.

store_type

Define the data store type.

auth_type()

Publish Auth type.

class databricks.feature_store.online_store_spec.OnlineStoreSpec(_type, hostname: [<class 'str'>, None] = None, port: [<class 'int'>,
None] = None, user: Optional[str] = None, password: Optional[str] = None, database_name: Optional[str] = None, table_name: Optional[str] = None,
driver_name: Optional[str] = None, read_secret_prefix: Optional[str] = None, write_secret_prefix: Optional[str] = None, _internal_properties:
Optional[Dict[str, str]] = None)

Bases: abc.ABC

Parent class for all types of onlinestoreSpec objects.

Abstract base class for classes that specify the online store to publish to.

If database_name and table_name are not provided, FeatureStoreClient.publish_table will use the offline store’s database and table
names.

To use a different database and table name in the online store, provide values for both database_name and table_name arguments.
The JDBC driver can be customized with the optional driver_name argument. Otherwise, a default is used.
Strings in the primary key should not exceed 100 characters.
The online database should already exist.
Note

Itis strongly suggested (but not required), to provide read-only database credentials via the read_secret_prefix in order to grant the least
amount of database access privileges to the served model. When providing a read_secret_prefix, the secrets must exist in the scope
name using the expected format, otherwise publish_table will return an error.

https://docs.python.org/3/library/abc.html#abc.ABC

Parameters: ¢ hostname - Hostname to access online store. The database hostname cannot be changed. Subsequent publish calls to the same online
store must provide the same hostname.
* port - Port number to access online store. The database port cannot be changed. Subsequent publish calls to the same online store must

provide the same port.
* user - Username that has write access to the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
e password - Password to access the online store. Deprecated as of version 0.6.0. Use write_secret_prefix instead.
¢ database_name - Database name.
e table_name - Table name.
e driver_name - Name of custom JDBC driver to access the online store.
e read_secret_prefix -
The secret scope name and secret key name prefix where read-only online store credentials are stored. These credentials will be used
during online feature serving to connect to the online store from the served model. The format of this parameter should be
${scope-name}/${prefix}, which is the name of the secret scope, followed by a /, followed by the secret key name prefix. The scope
passed in must contain the following keys and corresponding values:
© ${prefix}-user where ${prefix} isthe value passed into this function. For example if this function is called with
datascience/staging, the datascience secret scope should contain the secret named staging-user, which points to a secret
value with the database username for the online store.
©o ${prefix}-password where ${prefix} isthe value passed into this function. For example if this function is called with
datascience/staging, the datascience secret scope should contain the secret named staging-password, which pointsto a
secret value with the database password for the online store.
Once the read_secret_prefix is set for an online store, it cannot be changed.

e write_secret_prefix -
The secret scope name and secret key name prefix where read-write online store credentials are stored. These credentials will be used to
connect to the online store to publish features. If user and password are passed, this field must be None, or an exception will be raised.
The format of this parameter should be ${scope-name}/${prefix}, which isthe name of the secret scope, followed by a /, followed
by the secret key name prefix. The scope passed in must contain the following keys and corresponding values:

o ${prefix}-user where ${prefix} isthe value passed into this function. For example if this function is called with
datascience/staging, the datascience secret scope should contain the secret named staging-user, which points to a secret
value with the database username for the online store.

o ${prefix}-password Where ${prefix} isthe value passed into this function. For example if this function is called with
datascience/staging, the datascience secret scope should contain the secret named staging-password, which pointsto a

secret value with the database password for the online store.

type

Type of the online store.

table_name

Table name.

user

databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec.user isdeprecated since v0.6.0. This

method will be removed in a future release. Use write_secret_prefix instead.

Username that has access to the online store.

Property will be empty if write_secret_prefix argument was used.

password

databricks.feature_store.online_store_spec.online_store_spec.OnlineStoreSpec.password is deprecated since v0.6.0.

This method will be removed in a future release. Use write_secret_prefix instead.

Password to access the online store.

Property will be empty if write_secret_prefix argument was used.

driver

Name of the custom JDBC driver to access the online store.

read_secret_prefix
Prefix for read access to online store.
Name of the secret scope and prefix that contains the username and password to access the online store with read-only credentials.

See the read_secret_prefix parameter description for details.

write_secret_prefix
Secret prefix that contains online store login info.

Name of the secret scope and prefix that contains the username and password to access the online store with read/write credentials. See the
write_secret_prefix parameter description for details.

cloud

Cloud provider where this online store is located.

store_type

Store type.

auth_type()

Publish Auth type.

