temporary_view
To define a view in Python, apply the @temporary_view
decorator. Like the @table
decorator, you can use views in Lakeflow Declarative Pipelines for either static or streaming datasets.
note
The older dlt
module used the @view
decorator to defiine a temporary view. Databricks recommends using the pyspark.pipelines
module (imported as dp
) and the @temporary_view
decorator to define temporary views.
The following is the syntax for defining views with Python:
Syntax
Python
from pyspark import pipelines as dp
@dp.view(
name="<name>",
comment="<comment>")
@dp.expect(...)
def <function-name>():
return (<query>)
Parameters
Parameter | Type | Description |
---|---|---|
function |
| Required. A function that returns an Apache Spark DataFrame or streaming DataFrame from a user-defined query. |
|
| The table name. If not provided, defaults to the function name. |
|
| A description for the table. |