メインコンテンツまでスキップ

トラブルシューティングと制限事項

トラブルシューティング

エラーメッセージ: Database recommender_system does not exist in the Hive metastore.

特徴量テーブルは Delta テーブルとして格納されます。 データベースはテーブル名のプレフィックスで指定されるため、特徴量テーブル recommender_system.顧客recommender_system データベースに格納されます。

データベースを作成するには、次のコマンドを実行します。

%sql CREATE DATABASE IF NOT EXISTS recommender_system;

エラー メッセージ: ModuleNotFoundError: No module named 'databricks.feature_engineering' または ModuleNotFoundError: No module named 'databricks.feature_store'

このエラーは、使用している Databricks Runtime に databricks-feature-エンジニアリングがインストールされていない場合に発生します。

databricks-feature-エンジニアリング は PyPIで使用でき、次のものと共にインストールできます。

%pip install databricks-feature-engineering

エラーメッセージ: ModuleNotFoundError: No module named 'databricks.feature_store'

このエラーは、使用している Databricks Runtime に databricks-feature-store がインストールされていない場合に発生します。

注記

Databricks Runtime 14.3 以降の場合は、代わりに databricks-feature-エンジニアリングを %pip install databricks-feature-engineering

databricks-feature-store は PyPI で利用でき、以下を使用してインストールできます。

%pip install databricks-feature-store

エラーメッセージ: Invalid input. Data is not compatible with model signature. Cannot convert non-finite values...'

このエラーは、Feature Store でパッケージ化されたモデルを Mosaic AI Model Servingで使用している場合に発生する可能性があります。 エンドポイントへの入力にカスタム特徴量を指定する場合は、入力の各行に特徴量の値を指定するか、行を指定しない値を指定する必要があります。 一部の行のみにフィーチャのカスタム値を指定することはできません。

制限

  • モデルでは、トレーニングに使用できるテーブルは最大 50 個と 100 個です。

  • DLTを特徴量テーブルとして使用する場合、Databricks Runtime MLクラスタリングはサポートされません。代わりに、標準アクセス モードのコンピュート リソースを使用し、 pip install databricks-feature-engineeringを使用してクライアントを手動でインストールします。 また、その他の必要な ML ライブラリもインストールする必要があります。

    Python
    %pip install databricks-feature-engineering
  • マテリアライズドビュー とストリーミングテーブルは DLT パイプラインによって管理されています。 fe.write_table() は更新しません。代わりに、DLT パイプラインを使用してテーブルを更新します。

  • Feature Store APIs は、Feature Store でパッケージ化されたモデルのバッチ スコアリングをサポートします。 オンライン推論はサポートされていません。

  • Databricks レガシー ワークスペース Feature Store は、特徴量テーブルからの個々のフィーチャの削除をサポートしていません。

  • このリリースの時点では、 Databricks on Google Cloud でオンライン ストアはサポートされていません。