Acessar dados de rastreamento
Esta página demonstra como acessar todos os aspectos dos dados de rastreamento, incluindo metadados, intervalos, avaliações e muito mais. Depois de aprender como acessar os dados de rastreamento, consulte Analisar rastreamentos.
O objeto MLflow Trace consiste em dois componentes principais:
Propriedades básicas de metadados
Referência da API: TraceInfo
# Primary identifiers
print(f"Trace ID: {trace.info.trace_id}")
print(f"Client Request ID: {trace.info.client_request_id}")
# Status information
print(f"State: {trace.info.state}") # OK, ERROR, IN_PROGRESS
print(f"Status (deprecated): {trace.info.status}") # Use state instead
# Request/response previews (truncated)
print(f"Request preview: {trace.info.request_preview}")
print(f"Response preview: {trace.info.response_preview}")
Local de armazenamento e experimento
# Trace storage location
location = trace.info.trace_location
print(f"Location type: {location.type}")
# If stored in MLflow experiment
if location.mlflow_experiment:
print(f"Experiment ID: {location.mlflow_experiment.experiment_id}")
# Shortcut property
print(f"Experiment ID: {trace.info.experiment_id}")
# If stored in Databricks inference table
if location.inference_table:
print(f"Table: {location.inference_table.full_table_name}")
Pré-visualizações de solicitações e respostas
As propriedades request_preview e response_preview fornecem resumos truncados dos dados completos de solicitação e resposta, facilitando a compreensão rápida do que aconteceu sem carregar as cargas úteis completas.
request_preview = trace.info.request_preview
response_preview = trace.info.response_preview
print(f"Request preview: {request_preview}")
print(f"Response preview: {response_preview}")
# Compare with full request/response data
full_request = trace.data.request # Complete request text
full_response = trace.data.response # Complete response text
if full_request and request_preview:
print(f"Full request length: {len(full_request)} characters")
print(f"Preview is {len(request_preview)/len(full_request)*100:.1f}% of full request")
Propriedades relacionadas ao tempo
Referência da API: TraceInfo propriedades de temporização
# Timestamps (milliseconds since epoch)
print(f"Start time (ms): {trace.info.request_time}")
print(f"Timestamp (ms): {trace.info.timestamp_ms}") # Alias for request_time
# Duration
print(f"Execution duration (ms): {trace.info.execution_duration}")
print(f"Execution time (ms): {trace.info.execution_time_ms}") # Alias
# Convert to human-readable format
import datetime
start_time = datetime.datetime.fromtimestamp(trace.info.request_time / 1000)
print(f"Started at: {start_time}")
etiquetas e metadados
Referência da API: TraceInfo.tags e TraceInfo.trace_metadata
# Tags (mutable, can be updated after creation)
print("Tags:")
for key, value in trace.info.tags.items():
print(f" {key}: {value}")
# Access specific tags
print(f"Environment: {trace.info.tags.get('environment')}")
print(f"User ID: {trace.info.tags.get('user_id')}")
# Trace metadata (immutable, set at creation)
print("\nTrace metadata:")
for key, value in trace.info.trace_metadata.items():
print(f" {key}: {value}")
# Deprecated alias
print(f"Request metadata: {trace.info.request_metadata}") # Same as trace_metadata
informações sobre o uso de tokens
O MLflow Tracing pode rastrear o uso de tokens em chamadas LLM, utilizando a contagem de tokens retornada pelas APIs do provedor LLM.
# Get aggregated token usage (if available)
token_usage = trace.info.token_usage
if token_usage:
print(f"Input tokens: {token_usage.get('input_tokens')}")
print(f"Output tokens: {token_usage.get('output_tokens')}")
print(f"Total tokens: {token_usage.get('total_tokens')}")
A forma de rastrear o uso de tokens depende do provedor de LLM. A tabela a seguir descreve diferentes métodos de utilização de tokens de acompanhamento em diversos provedores e plataformas.
Cenário | Como rastrear o uso de tokens |
|---|---|
Utilize o cliente OpenAI para verificar se o MLflow Tracing rastreia automaticamente o uso de tokens. | |
Fornecedores LLM com suporte nativo MLflow Tracing | Consulte a página de integração do provedor em IntegraçõesMLflow Tracing para determinar se o acompanhamento por tokens nativos é compatível. |
Provedores sem suporte nativo MLflow Tracing | log manualmente o uso de tokens usando |
Monitore vários endpoints em toda a sua plataforma AI . | Utilize o acompanhamento de uso doAI Gateway para registrar o uso de tokens em tabelas do sistema em todos os endpoints de serviço. |
Avaliações
Encontre avaliações com search_assessments().
Referência da API: Trace.search_assessments
# 1. Get all assessments
all_assessments = trace.search_assessments()
print(f"Total assessments: {len(all_assessments)}")
# 2. Search by name
helpfulness = trace.search_assessments(name="helpfulness")
if helpfulness:
assessment = helpfulness[0]
print(f"Helpfulness: {assessment.value}")
print(f"Source: {assessment.source.source_type} - {assessment.source.source_id}")
print(f"Rationale: {assessment.rationale}")
# 3. Search by type
feedback_only = trace.search_assessments(type="feedback")
expectations_only = trace.search_assessments(type="expectation")
print(f"Feedback assessments: {len(feedback_only)}")
print(f"Expectation assessments: {len(expectations_only)}")
# 4. Search by span ID
span_assessments = trace.search_assessments(span_id=retriever_span.span_id)
print(f"Assessments for retriever span: {len(span_assessments)}")
# 5. Get all assessments including overridden ones
all_including_invalid = trace.search_assessments(all=True)
print(f"All assessments (including overridden): {len(all_including_invalid)}")
# 6. Combine criteria
human_feedback = trace.search_assessments(
type="feedback",
name="helpfulness"
)
for fb in human_feedback:
print(f"Human feedback: {fb.name} = {fb.value}")
Acesse os detalhes da avaliação.
# Get detailed assessment information
for assessment in trace.info.assessments:
print(f"\nAssessment: {assessment.name}")
print(f" Type: {type(assessment).__name__}")
print(f" Value: {assessment.value}")
print(f" Source: {assessment.source.source_type.value}")
print(f" Source ID: {assessment.source.source_id}")
# Optional fields
if assessment.rationale:
print(f" Rationale: {assessment.rationale}")
if assessment.metadata:
print(f" Metadata: {assessment.metadata}")
if assessment.error:
print(f" Error: {assessment.error}")
if hasattr(assessment, 'span_id') and assessment.span_id:
print(f" Span ID: {assessment.span_id}")
Trabalhar com Spans
Os trechos são os blocos de construção dos registros, representando operações individuais ou unidades de trabalho. A classe Span representa intervalos imutáveis e completos recuperados de rastreamentos.
Acesse as propriedades do intervalo
Referência da API: TraceData.spans e Span
# Access all spans from a trace
spans = trace.data.spans
print(f"Total spans: {len(spans)}")
# Get a specific span
span = spans[0]
# Basic properties
print(f"Span ID: {span.span_id}")
print(f"Name: {span.name}")
print(f"Type: {span.span_type}")
print(f"Trace ID: {span.trace_id}") # Which trace this span belongs to
print(f"Parent ID: {span.parent_id}") # None for root spans
# Timing information (nanoseconds)
print(f"Start time: {span.start_time_ns}")
print(f"End time: {span.end_time_ns}")
duration_ms = (span.end_time_ns - span.start_time_ns) / 1_000_000
print(f"Duration: {duration_ms:.2f}ms")
# Status information
print(f"Status: {span.status}")
print(f"Status code: {span.status.status_code}")
print(f"Status description: {span.status.description}")
# Inputs and outputs
print(f"Inputs: {span.inputs}")
print(f"Outputs: {span.outputs}")
# Iterate through all spans
for span in spans:
print(f"\nSpan: {span.name}")
print(f" ID: {span.span_id}")
print(f" Type: {span.span_type}")
print(f" Duration (ms): {(span.end_time_ns - span.start_time_ns) / 1_000_000:.2f}")
# Parent-child relationships
if span.parent_id:
print(f" Parent ID: {span.parent_id}")
Encontre intervalos específicos
Use search_spans() para encontrar intervalos que correspondam a critérios específicos:
import re
from mlflow.entities import SpanType
# 1. Search by exact name
retriever_spans = trace.search_spans(name="retrieve_documents")
print(f"Found {len(retriever_spans)} retriever spans")
# 2. Search by regex pattern
pattern = re.compile(r".*_tool$")
tool_spans = trace.search_spans(name=pattern)
print(f"Found {len(tool_spans)} tool spans")
# 3. Search by span type
chat_spans = trace.search_spans(span_type=SpanType.CHAT_MODEL)
llm_spans = trace.search_spans(span_type="CHAT_MODEL") # String also works
print(f"Found {len(chat_spans)} chat model spans")
# 4. Search by span ID
specific_span = trace.search_spans(span_id=retriever_spans[0].span_id)
print(f"Found span: {specific_span[0].name if specific_span else 'Not found'}")
# 5. Combine criteria
tool_fact_check = trace.search_spans(
name="fact_check_tool",
span_type=SpanType.TOOL
)
print(f"Found {len(tool_fact_check)} fact check tool spans")
# 6. Get all spans of a type
all_tools = trace.search_spans(span_type=SpanType.TOOL)
for tool in all_tools:
print(f"Tool: {tool.name}")
Resultados intermediários
# Get intermediate outputs from non-root spans
intermediate = trace.data.intermediate_outputs
if intermediate:
print("\nIntermediate outputs:")
for span_name, output in intermediate.items():
print(f" {span_name}: {output}")
Atributos de extensão
Referência da API: Span.get_attribute e SpanAttributeKey
from mlflow.tracing.constant import SpanAttributeKey
# Get a chat model span
chat_span = trace.search_spans(span_type=SpanType.CHAT_MODEL)[0]
# Get all attributes
print("All span attributes:")
for key, value in chat_span.attributes.items():
print(f" {key}: {value}")
# Get specific attribute
specific_attr = chat_span.get_attribute("custom_attribute")
print(f"Custom attribute: {specific_attr}")
# Access chat-specific attributes using SpanAttributeKey
messages = chat_span.get_attribute(SpanAttributeKey.CHAT_MESSAGES)
tools = chat_span.get_attribute(SpanAttributeKey.CHAT_TOOLS)
print(f"Chat messages: {messages}")
print(f"Available tools: {tools}")
# Access token usage from span
input_tokens = chat_span.get_attribute("llm.token_usage.input_tokens")
output_tokens = chat_span.get_attribute("llm.token_usage.output_tokens")
print(f"Span token usage - Input: {input_tokens}, Output: {output_tokens}")
Criar e modificar intervalos durante a execução.
Ao criar intervalos durante a execução, você trabalha com objetos LiveSpan que podem ser modificados:
import mlflow
from mlflow.entities import SpanType, SpanStatus, SpanStatusCode
@mlflow.trace(span_type=SpanType.CHAIN)
def process_data(data: dict):
# Get the current active span (LiveSpan)
span = mlflow.get_current_active_span()
# Set span type (if not set via decorator)
span.set_span_type(SpanType.CHAIN)
# Set inputs
span.set_inputs({"data": data, "timestamp": time.time()})
# Set individual attributes
span.set_attribute("processing_version", "2.0")
span.set_attribute("data_size", len(str(data)))
# Set multiple attributes at once
span.set_attributes({
"environment": "production",
"region": "us-west-2",
"custom_metadata": {"key": "value"}
})
try:
# Process the data
result = {"processed": True, "count": len(data)}
# Set outputs
span.set_outputs(result)
# Set success status
span.set_status(SpanStatusCode.OK)
except Exception as e:
# Record the exception
span.record_exception(e)
# This automatically sets status to ERROR and adds an exception event
raise
return result
# Example with manual span creation
with mlflow.start_span(name="manual_span", span_type=SpanType.TOOL) as span:
# Add events during execution
from mlflow.entities import SpanEvent
span.add_event(SpanEvent(
name="processing_started",
attributes={
"stage": "initialization",
"memory_usage_mb": 256
}
))
# Do some work...
time.sleep(0.1)
# Add another event
span.add_event(SpanEvent(
name="checkpoint_reached",
attributes={"progress": 0.5}
))
# Manually end the span with outputs and status
span.end(
outputs={"result": "success"},
attributes={"final_metric": 0.95},
status=SpanStatusCode.OK
)
Eventos de abrangência
Os eventos registram ocorrências específicas durante a duração de um período.
Referência da API: SpanEvent
from mlflow.entities import SpanEvent
import time
# Create an event with current timestamp
event = SpanEvent(
name="validation_completed",
attributes={
"records_validated": 1000,
"errors_found": 3,
"validation_type": "schema"
}
)
# Create an event with specific timestamp (nanoseconds)
specific_time_event = SpanEvent(
name="data_checkpoint",
timestamp=int(time.time() * 1e9),
attributes={"checkpoint_id": "ckpt_123"}
)
# Create an event from an exception
try:
raise ValueError("Invalid input format")
except Exception as e:
error_event = SpanEvent.from_exception(e)
# This creates an event with name="exception" and attributes containing:
# - exception.message
# - exception.type
# - exception.stacktrace
# Add to current span
span = mlflow.get_current_active_span()
span.add_event(error_event)
Estado do span
Status de execução do intervalo de controle e consulta.
Referência da API: SpanStatus
from mlflow.entities import SpanStatus, SpanStatusCode
# Create status objects
success_status = SpanStatus(SpanStatusCode.OK)
error_status = SpanStatus(
SpanStatusCode.ERROR,
description="Failed to connect to database"
)
# Set status on a live span
span = mlflow.get_current_active_span()
span.set_status(success_status)
# Or use string shortcuts
span.set_status("OK")
span.set_status("ERROR")
# Query status from completed spans
for span in trace.data.spans:
if span.status.status_code == SpanStatusCode.ERROR:
print(f"Error in {span.name}: {span.status.description}")
Trabalhar com intervalos RETRIEVER
RETRIEVER Os intervalos (spans) têm requisitos de saída especiais:
from mlflow.entities import Document, SpanType
@mlflow.trace(span_type=SpanType.RETRIEVER)
def retrieve_documents(query: str):
span = mlflow.get_current_active_span()
# Create Document objects (required for RETRIEVER spans)
documents = [
Document(
page_content="The content of the document...",
metadata={
"doc_uri": "path/to/document.md",
"chunk_id": "chunk_001",
"relevance_score": 0.95,
"source": "knowledge_base"
},
id="doc_123" # Optional document ID
),
Document(
page_content="Another relevant section...",
metadata={
"doc_uri": "path/to/other.md",
"chunk_id": "chunk_042",
"relevance_score": 0.87
}
)
]
# Set outputs as Document objects for proper UI rendering
span.set_outputs(documents)
# Return in your preferred format
return [doc.to_dict() for doc in documents]
# Access retriever outputs
retriever_span = trace.search_spans(span_type=SpanType.RETRIEVER)[0]
if retriever_span.outputs:
for doc in retriever_span.outputs:
if isinstance(doc, dict):
content = doc.get('page_content', '')
uri = doc.get('metadata', {}).get('doc_uri', '')
score = doc.get('metadata', {}).get('relevance_score', 0)
print(f"Document from {uri} (score: {score})")
operações avançadas de extensão
Converter intervalos de dados em/de dicionários
# Convert span to dictionary
span_dict = span.to_dict()
print(f"Span dict keys: {span_dict.keys()}")
# Recreate span from dictionary
from mlflow.entities import Span
reconstructed_span = Span.from_dict(span_dict)
print(f"Reconstructed span: {reconstructed_span.name}")
Análise de extensão avançada
def analyze_span_tree(trace):
"""Analyze the span hierarchy and relationships."""
spans = trace.data.spans
# Build parent-child relationships
span_dict = {span.span_id: span for span in spans}
children = {}
for span in spans:
if span.parent_id:
if span.parent_id not in children:
children[span.parent_id] = []
children[span.parent_id].append(span)
# Find root spans
roots = [s for s in spans if s.parent_id is None]
def print_tree(span, indent=0):
duration_ms = (span.end_time_ns - span.start_time_ns) / 1_000_000
status_icon = "✓" if span.status.status_code == SpanStatusCode.OK else "✗"
print(f"{' ' * indent}{status_icon} {span.name} ({span.span_type}) - {duration_ms:.1f}ms")
# Print children
for child in sorted(children.get(span.span_id, []),
key=lambda s: s.start_time_ns):
print_tree(child, indent + 1)
print("Span Hierarchy:")
for root in roots:
print_tree(root)
# Calculate span statistics
total_time = sum((s.end_time_ns - s.start_time_ns) / 1_000_000
for s in spans)
llm_time = sum((s.end_time_ns - s.start_time_ns) / 1_000_000
for s in spans if s.span_type in [SpanType.LLM, SpanType.CHAT_MODEL])
retrieval_time = sum((s.end_time_ns - s.start_time_ns) / 1_000_000
for s in spans if s.span_type == SpanType.RETRIEVER)
print(f"\nSpan Statistics:")
print(f" Total spans: {len(spans)}")
print(f" Total time: {total_time:.1f}ms")
print(f" LLM time: {llm_time:.1f}ms ({llm_time/total_time*100:.1f}%)")
print(f" Retrieval time: {retrieval_time:.1f}ms ({retrieval_time/total_time*100:.1f}%)")
# Find critical path (longest duration path from root to leaf)
def find_critical_path(span):
child_paths = []
for child in children.get(span.span_id, []):
path, duration = find_critical_path(child)
child_paths.append((path, duration))
span_duration = (span.end_time_ns - span.start_time_ns) / 1_000_000
if child_paths:
best_path, best_duration = max(child_paths, key=lambda x: x[1])
return [span] + best_path, span_duration + best_duration
else:
return [span], span_duration
if roots:
critical_paths = [find_critical_path(root) for root in roots]
critical_path, critical_duration = max(critical_paths, key=lambda x: x[1])
print(f"\nCritical Path ({critical_duration:.1f}ms total):")
for span in critical_path:
duration_ms = (span.end_time_ns - span.start_time_ns) / 1_000_000
print(f" → {span.name} ({duration_ms:.1f}ms)")
# Use the analyzer
analyze_span_tree(trace)
Dados de solicitação e resposta
# Get root span request/response (backward compatibility)
request_json = trace.data.request
response_json = trace.data.response
# Parse JSON strings
import json
if request_json:
request_data = json.loads(request_json)
print(f"Request: {request_data}")
if response_json:
response_data = json.loads(response_json)
print(f"Response: {response_data}")
Exportação e conversão de dados
Converter para dicionário
Referência da API: Trace.to_dict
# Convert entire trace to dictionary
trace_dict = trace.to_dict()
print(f"Trace dict keys: {trace_dict.keys()}")
print(f"Info keys: {trace_dict['info'].keys()}")
print(f"Data keys: {trace_dict['data'].keys()}")
# Convert individual components
info_dict = trace.info.to_dict()
data_dict = trace.data.to_dict()
# Reconstruct trace from dictionary
from mlflow.entities import Trace
reconstructed_trace = Trace.from_dict(trace_dict)
print(f"Reconstructed trace ID: {reconstructed_trace.info.trace_id}")
Serialização JSON
Referência da API: Trace.to_json
# Convert to JSON string
trace_json = trace.to_json()
print(f"JSON length: {len(trace_json)} characters")
# Pretty print JSON
trace_json_pretty = trace.to_json(pretty=True)
print("Pretty JSON (first 500 chars):")
print(trace_json_pretty[:500])
# Load trace from JSON
from mlflow.entities import Trace
loaded_trace = Trace.from_json(trace_json)
print(f"Loaded trace ID: {loaded_trace.info.trace_id}")
ConversãoPandas DataFrame
Referência da API: Trace.to_pandas_dataframe_row
# Convert trace to DataFrame row
row_data = trace.to_pandas_dataframe_row()
print(f"DataFrame row keys: {list(row_data.keys())}")
# Create DataFrame from multiple traces
import pandas as pd
# Get multiple traces
traces = mlflow.search_traces(max_results=5)
# If you have individual trace objects
trace_rows = [t.to_pandas_dataframe_row() for t in [trace]]
df = pd.DataFrame(trace_rows)
print(f"DataFrame shape: {df.shape}")
print(f"Columns: {df.columns.tolist()}")
# Access specific data from DataFrame
print(f"Trace IDs: {df['trace_id'].tolist()}")
print(f"States: {df['state'].tolist()}")
print(f"Durations: {df['execution_duration'].tolist()}")
Próximos passos
- Analisar rastros - Analise rastros para casos de uso específicos.