2024-04-18 21:34:54.101035: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Epoch 1/35
1/413 [..............................] - ETA: 5:03 - loss: 4.0107 - mse: 4.0107WARNING:tensorflow:Callback method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0024s vs `on_train_batch_end` time: 0.0026s). Check your callbacks.
402/413 [============================>.] - ETA: 0s - loss: 1.1420 - mse: 1.1420
Epoch 1: val_loss improved from inf to 0.60280, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 5s 11ms/step - loss: 1.1313 - mse: 1.1313 - val_loss: 0.6028 - val_mse: 0.6028
Epoch 2/35
408/413 [============================>.] - ETA: 0s - loss: 0.5039 - mse: 0.5039
Epoch 2: val_loss improved from 0.60280 to 0.46389, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.5018 - mse: 0.5018 - val_loss: 0.4639 - val_mse: 0.4639
Epoch 3/35
395/413 [===========================>..] - ETA: 0s - loss: 0.4187 - mse: 0.4187
Epoch 3: val_loss improved from 0.46389 to 0.41669, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.4249 - mse: 0.4249 - val_loss: 0.4167 - val_mse: 0.4167
Epoch 4/35
412/413 [============================>.] - ETA: 0s - loss: 0.3941 - mse: 0.3941
Epoch 4: val_loss improved from 0.41669 to 0.39997, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3937 - mse: 0.3937 - val_loss: 0.4000 - val_mse: 0.4000
Epoch 5/35
406/413 [============================>.] - ETA: 0s - loss: 0.3791 - mse: 0.3791
Epoch 5: val_loss improved from 0.39997 to 0.39718, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3779 - mse: 0.3779 - val_loss: 0.3972 - val_mse: 0.3972
Epoch 6/35
391/413 [===========================>..] - ETA: 0s - loss: 0.3705 - mse: 0.3705
Epoch 6: val_loss improved from 0.39718 to 0.38935, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3698 - mse: 0.3698 - val_loss: 0.3893 - val_mse: 0.3893
Epoch 7/35
406/413 [============================>.] - ETA: 0s - loss: 0.3647 - mse: 0.3647
Epoch 7: val_loss improved from 0.38935 to 0.37909, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 4s 8ms/step - loss: 0.3639 - mse: 0.3639 - val_loss: 0.3791 - val_mse: 0.3791
Epoch 8/35
404/413 [============================>.] - ETA: 0s - loss: 0.3589 - mse: 0.3589
Epoch 8: val_loss improved from 0.37909 to 0.37491, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3586 - mse: 0.3586 - val_loss: 0.3749 - val_mse: 0.3749
Epoch 9/35
411/413 [============================>.] - ETA: 0s - loss: 0.3530 - mse: 0.3530
Epoch 9: val_loss improved from 0.37491 to 0.36797, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3528 - mse: 0.3528 - val_loss: 0.3680 - val_mse: 0.3680
Epoch 10/35
398/413 [===========================>..] - ETA: 0s - loss: 0.3461 - mse: 0.3461
Epoch 10: val_loss did not improve from 0.36797
413/413 [==============================] - 1s 3ms/step - loss: 0.3476 - mse: 0.3476 - val_loss: 0.3693 - val_mse: 0.3693
Epoch 11/35
401/413 [============================>.] - ETA: 0s - loss: 0.3390 - mse: 0.3390
Epoch 11: val_loss improved from 0.36797 to 0.35243, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3411 - mse: 0.3411 - val_loss: 0.3524 - val_mse: 0.3524
Epoch 12/35
399/413 [===========================>..] - ETA: 0s - loss: 0.3375 - mse: 0.3375
Epoch 12: val_loss did not improve from 0.35243
413/413 [==============================] - 1s 3ms/step - loss: 0.3354 - mse: 0.3354 - val_loss: 0.3527 - val_mse: 0.3527
Epoch 13/35
400/413 [============================>.] - ETA: 0s - loss: 0.3316 - mse: 0.3316
Epoch 13: val_loss improved from 0.35243 to 0.34199, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3308 - mse: 0.3308 - val_loss: 0.3420 - val_mse: 0.3420
Epoch 14/35
406/413 [============================>.] - ETA: 0s - loss: 0.3303 - mse: 0.3303
Epoch 14: val_loss did not improve from 0.34199
413/413 [==============================] - 1s 3ms/step - loss: 0.3299 - mse: 0.3299 - val_loss: 0.3692 - val_mse: 0.3692
Epoch 15/35
388/413 [===========================>..] - ETA: 0s - loss: 0.3281 - mse: 0.3281
Epoch 15: val_loss improved from 0.34199 to 0.33373, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3291 - mse: 0.3291 - val_loss: 0.3337 - val_mse: 0.3337
Epoch 16/35
394/413 [===========================>..] - ETA: 0s - loss: 0.3210 - mse: 0.3210
Epoch 16: val_loss did not improve from 0.33373
413/413 [==============================] - 1s 3ms/step - loss: 0.3241 - mse: 0.3241 - val_loss: 0.3534 - val_mse: 0.3534
Epoch 17/35
393/413 [===========================>..] - ETA: 0s - loss: 0.3190 - mse: 0.3190
Epoch 17: val_loss improved from 0.33373 to 0.33032, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3206 - mse: 0.3206 - val_loss: 0.3303 - val_mse: 0.3303
Epoch 18/35
398/413 [===========================>..] - ETA: 0s - loss: 0.3166 - mse: 0.3166
Epoch 18: val_loss did not improve from 0.33032
413/413 [==============================] - 1s 3ms/step - loss: 0.3159 - mse: 0.3159 - val_loss: 0.3357 - val_mse: 0.3357
Epoch 19/35
400/413 [============================>.] - ETA: 0s - loss: 0.3144 - mse: 0.3144
Epoch 19: val_loss improved from 0.33032 to 0.32576, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3150 - mse: 0.3150 - val_loss: 0.3258 - val_mse: 0.3258
Epoch 20/35
403/413 [============================>.] - ETA: 0s - loss: 0.3136 - mse: 0.3136
Epoch 20: val_loss did not improve from 0.32576
413/413 [==============================] - 1s 3ms/step - loss: 0.3123 - mse: 0.3123 - val_loss: 0.3288 - val_mse: 0.3288
Epoch 21/35
396/413 [===========================>..] - ETA: 0s - loss: 0.3144 - mse: 0.3144
Epoch 21: val_loss improved from 0.32576 to 0.32163, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3131 - mse: 0.3131 - val_loss: 0.3216 - val_mse: 0.3216
Epoch 22/35
391/413 [===========================>..] - ETA: 0s - loss: 0.3111 - mse: 0.3111
Epoch 22: val_loss did not improve from 0.32163
413/413 [==============================] - 1s 3ms/step - loss: 0.3113 - mse: 0.3113 - val_loss: 0.3336 - val_mse: 0.3336
Epoch 23/35
400/413 [============================>.] - ETA: 0s - loss: 0.3097 - mse: 0.3097
Epoch 23: val_loss did not improve from 0.32163
413/413 [==============================] - 1s 3ms/step - loss: 0.3106 - mse: 0.3106 - val_loss: 0.3265 - val_mse: 0.3265
Epoch 24/35
394/413 [===========================>..] - ETA: 0s - loss: 0.3134 - mse: 0.3134
Epoch 24: val_loss did not improve from 0.32163
413/413 [==============================] - 1s 3ms/step - loss: 0.3101 - mse: 0.3101 - val_loss: 0.3277 - val_mse: 0.3277
Epoch 25/35
408/413 [============================>.] - ETA: 0s - loss: 0.3081 - mse: 0.3081
Epoch 25: val_loss improved from 0.32163 to 0.31935, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3074 - mse: 0.3074 - val_loss: 0.3194 - val_mse: 0.3194
Epoch 26/35
389/413 [===========================>..] - ETA: 0s - loss: 0.3026 - mse: 0.3026
Epoch 26: val_loss did not improve from 0.31935
413/413 [==============================] - 1s 3ms/step - loss: 0.3052 - mse: 0.3052 - val_loss: 0.3280 - val_mse: 0.3280
Epoch 27/35
404/413 [============================>.] - ETA: 0s - loss: 0.3048 - mse: 0.3048
Epoch 27: val_loss improved from 0.31935 to 0.31900, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3047 - mse: 0.3047 - val_loss: 0.3190 - val_mse: 0.3190
Epoch 28/35
400/413 [============================>.] - ETA: 0s - loss: 0.3070 - mse: 0.3070
Epoch 28: val_loss did not improve from 0.31900
413/413 [==============================] - 1s 3ms/step - loss: 0.3061 - mse: 0.3061 - val_loss: 0.3288 - val_mse: 0.3288
Epoch 29/35
389/413 [===========================>..] - ETA: 0s - loss: 0.3057 - mse: 0.3057
Epoch 29: val_loss improved from 0.31900 to 0.31752, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 3s 8ms/step - loss: 0.3060 - mse: 0.3060 - val_loss: 0.3175 - val_mse: 0.3175
Epoch 30/35
404/413 [============================>.] - ETA: 0s - loss: 0.3044 - mse: 0.3044
Epoch 30: val_loss did not improve from 0.31752
413/413 [==============================] - 1s 3ms/step - loss: 0.3034 - mse: 0.3034 - val_loss: 0.3254 - val_mse: 0.3254
Epoch 31/35
399/413 [===========================>..] - ETA: 0s - loss: 0.2991 - mse: 0.2991
Epoch 31: val_loss improved from 0.31752 to 0.31632, saving model to /dbfs/<username>/keras_checkpoint_weights.ckpt
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
INFO:tensorflow:Assets written to: /dbfs/<username>/keras_checkpoint_weights.ckpt/assets
413/413 [==============================] - 4s 9ms/step - loss: 0.3008 - mse: 0.3008 - val_loss: 0.3163 - val_mse: 0.3163
Epoch 32/35
403/413 [============================>.] - ETA: 0s - loss: 0.3012 - mse: 0.3012
Epoch 32: val_loss did not improve from 0.31632
413/413 [==============================] - 1s 3ms/step - loss: 0.2992 - mse: 0.2992 - val_loss: 0.3215 - val_mse: 0.3215
Epoch 33/35
413/413 [==============================] - ETA: 0s - loss: 0.2979 - mse: 0.2979
Epoch 33: val_loss did not improve from 0.31632
413/413 [==============================] - 1s 3ms/step - loss: 0.2979 - mse: 0.2979 - val_loss: 0.3259 - val_mse: 0.3259
Epoch 34/35
386/413 [===========================>..] - ETA: 0s - loss: 0.3002 - mse: 0.3002
Epoch 34: val_loss did not improve from 0.31632
413/413 [==============================] - 1s 3ms/step - loss: 0.2981 - mse: 0.2981 - val_loss: 0.3245 - val_mse: 0.3245
Epoch 35/35
389/413 [===========================>..] - ETA: 0s - loss: 0.2952 - mse: 0.2952
Epoch 35: val_loss did not improve from 0.31632
413/413 [==============================] - 1s 3ms/step - loss: 0.2968 - mse: 0.2968 - val_loss: 0.3181 - val_mse: 0.3181
1/1 [==============================] - 0s 88ms/step
INFO:tensorflow:Assets written to: /local_disk0/repl_tmp_data/ReplId-3088f-d4006-b00f2-c/tmp210_4kbz/model/data/model/assets
INFO:tensorflow:Assets written to: /local_disk0/repl_tmp_data/ReplId-3088f-d4006-b00f2-c/tmp210_4kbz/model/data/model/assets
Uploading artifacts: 0%| | 0/12 [00:00<?, ?it/s]
Uploading artifacts: 0%| | 0/2 [00:00<?, ?it/s]
Tensorboard may not be displayed in the notebook cell output when 'Third-party iFraming prevention' is disabled. You can still use Tensorboard by clicking the link below to open Tensorboard in a new tab. To enable Tensorboard in notebook cell output, please ask your workspace admin to enable 'Third-party iFraming prevention'.
Launching TensorBoard...
WARNING:hyperopt-spark:Because the requested parallelism was None or a non-positive value, parallelism will be set to (8), which is Spark's default parallelism (8), or 1, whichever is greater. We recommend setting parallelism explicitly to a positive value because the total of Spark task slots is subject to cluster sizing.
INFO:hyperopt-spark:Hyperopt with SparkTrials will automatically track trials in MLflow. To view the MLflow experiment associated with the notebook, click the 'Runs' icon in the notebook context bar on the upper right. There, you can view all runs.
INFO:hyperopt-spark:To view logs from trials, please check the Spark executor logs. To view executor logs, expand 'Spark Jobs' above until you see the (i) icon next to the stage from the trial job. Click it and find the list of tasks. Click the 'stderr' link for a task to view trial logs.
100%|██████████| 30/30 [03:13<00:00, 6.47s/trial, best loss: 0.2896008789539337]
INFO:hyperopt-spark:Total Trials: 30: 30 succeeded, 0 failed, 0 cancelled.
Epoch 1/35
1/516 [..............................] - ETA: 5:42 - loss: 4.6747 - mse: 4.6747WARNING:tensorflow:Callback method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0012s vs `on_train_batch_end` time: 0.0019s). Check your callbacks.
WARNING:tensorflow:Callback method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0012s vs `on_train_batch_end` time: 0.0019s). Check your callbacks.
516/516 [==============================] - 2s 2ms/step - loss: 0.6631 - mse: 0.6631
Epoch 2/35
516/516 [==============================] - 1s 2ms/step - loss: 0.3947 - mse: 0.3947
Epoch 3/35
516/516 [==============================] - 1s 2ms/step - loss: 0.3652 - mse: 0.3652
Epoch 4/35
516/516 [==============================] - 1s 2ms/step - loss: 0.3490 - mse: 0.3490
Epoch 5/35
516/516 [==============================] - 1s 2ms/step - loss: 0.3438 - mse: 0.3438
Epoch 6/35
516/516 [==============================] - 1s 2ms/step - loss: 0.3218 - mse: 0.3218
Epoch 7/35
516/516 [==============================] - 1s 2ms/step - loss: 0.3415 - mse: 0.3415
Epoch 8/35
362/516 [====================>.........] - ETA: 0s - loss: 0.3143 - mse: 0.316
*** WARNING: max output size exceeded, skipping output. ***
516/516 [==============================] - 1s 2ms/step - loss: 0.2788 - mse: 0.2788
Epoch 29/35
516/516 [==============================] - 1s 2ms/step - loss: 0.2826 - mse: 0.2826
Epoch 30/35
516/516 [==============================] - 1s 2ms/step - loss: 0.2785 - mse: 0.2785
Epoch 31/35
516/516 [==============================] - 1s 2ms/step - loss: 0.2809 - mse: 0.2809
Epoch 32/35
516/516 [==============================] - 1s 2ms/step - loss: 0.2888 - mse: 0.2888
Epoch 33/35
516/516 [==============================] - 1s 2ms/step - loss: 0.2749 - mse: 0.2749
Epoch 34/35
516/516 [==============================] - 1s 2ms/step - loss: 0.2783 - mse: 0.2783
Epoch 35/35
516/516 [==============================] - 1s 2ms/step - loss: 0.2821 - mse: 0.2821
1/1 [==============================] - 0s 56ms/step
INFO:tensorflow:Assets written to: /local_disk0/repl_tmp_data/ReplId-3088f-d4006-b00f2-c/tmpqbcfgll5/model/data/model/assets
INFO:tensorflow:Assets written to: /local_disk0/repl_tmp_data/ReplId-3088f-d4006-b00f2-c/tmpqbcfgll5/model/data/model/assets
Uploading artifacts: 0%| | 0/12 [00:00<?, ?it/s]
2024/04/18 21:41:06 INFO mlflow.store.artifact.cloud_artifact_repo: The progress bar can be disabled by setting the environment variable MLFLOW_ENABLE_ARTIFACTS_PROGRESS_BAR to false
Uploading artifacts: 0%| | 0/1 [00:00<?, ?it/s]
129/129 [==============================] - 0s 1ms/step - loss: 0.2791 - mse: 0.2791
129/129 [==============================] - 0s 1ms/step
Downloading artifacts: 0%| | 0/12 [00:00<?, ?it/s]
2024/04/18 21:41:23 INFO mlflow.store.artifact.artifact_repo: The progress bar can be disabled by setting the environment variable MLFLOW_ENABLE_ARTIFACTS_PROGRESS_BAR to false
129/129 [==============================] - 0s 1ms/step
array([[0.6047815],
[3.2157354],
[2.4929218],
...,
[1.1273922],
[1.4164997],
[3.8568711]], dtype=float32)
Getting started with deep learning in Databricks: an end-to-end example using TensorFlow Keras, Hyperopt, and MLflow
This tutorial uses a small dataset to show how to use TensorFlow Keras, Hyperopt, and MLflow to develop a deep learning model in Databricks.
It includes the following steps:
Requirements