Skip to main content

Serverless environment version 2

This article outlines the system environment information for serverless environment version 2.

To ensure compatibility for the application, serverless workloads use a versioned API, known as the environment version, which remains compatible with newer server versions.

You can select the environment version using the Environment side panel in your serverless notebooks. See Configure the serverless environment.

For more on environment versions, see Serverless compute release notes.

New features and improvements

The following new features and improvements are available in serverless environment 2.

Web terminal enabled on serverless compute

April 3, 2025

The web terminal is now enabled on serverless environment version 2. For more information on how to use the web terminal, see Run shell commands in Databricks web terminal.

The VARIANT data type can no longer be used with operations that require comparisons

February 5, 2025

You cannot use the following clauses or operators in queries that include a VARIANT data type:

  • DISTINCT
  • INTERSECT
  • EXCEPT
  • UNION
  • DISTRIBUTE BY

Additionally, you cannot use these DataFrame functions:

  • df.dropDuplicates()
  • df.repartition()

These operations perform comparisons, and comparisons that use the VARIANT data type produce undefined results and are not supported in Databricks. If you use the VARIANT type in your Databricks workloads or tables, Databricks recommends the following changes:

  • Update queries or expressions to explicitly cast VARIANT values to non-VARIANT data types.
  • If you have fields that must be used with any of the above operations, extract those fields from the VARIANT data type and store them using non-VARIANT data types.

See Query variant data.

Notebooks are supported as workspace files

January 23, 2025

Notebooks are supported as workspace files in serverless environment 2. You can programmatically write, read, and delete notebooks just as you would any other file. This allows for programmatic interaction with notebooks from anywhere the workspace filesystem is available. For more information, see Notebooks as workspace files.

Task progress bar added to serverless compute

December 16, 2024

A new task progress bar has been added to notebook cells running on serverless compute environment version 2. This progress bar indicates the execution progress of the cell's Spark code.

Serverless progress bar

System environment

  • Operating System: Ubuntu 22.04.4 LTS
  • Python: 3.11.10
  • Databricks Connect: 15.4.5

Installed Python libraries

Library

Version

Library

Version

Library

Version

asttokens

2.0.5

astunparse

1.6.3

autocommand

2.2.2

azure-core

1.31.0

azure-storage-blob

12.19.1

azure-storage-file-datalake

12.14.0

backports.tarfile

1.2.0

black

23.3.0

blinker

1.4

boto3

1.34.39

botocore

1.34.39

cachetools

5.5.0

certifi

2023.7.22

cffi

1.15.1

chardet

4.0.0

charset-normalizer

2.0.4

click

8.0.4

cloudpickle

3.0.0

comm

0.1.2

contourpy

1.0.5

cryptography

41.0.3

cycler

0.11.0

Cython

0.29.32

databricks-connect

15.4.5

databricks-sdk

0.36.0

dbus-python

1.2.18

debugpy

1.6.7

decorator

5.1.1

dill

0.3.6

distlib

0.3.9

entrypoints

0.4

executing

0.8.3

facets-overview

1.1.1

filelock

3.13.4

fonttools

4.25.0

gitdb

4.0.11

GitPython

3.1.43

google-api-core

2.18.0

google-auth

2.35.0

google-cloud-core

2.4.1

google-cloud-storage

2.18.2

google-crc32c

1.6.0

google-resumable-media

2.7.2

googleapis-common-protos

1.65.0

grpcio

1.67.0

grpcio-status

1.67.0

httplib2

0.20.2

idna

3.4

importlib-metadata

6.0.0

importlib_resources

6.4.0

inflect

7.3.1

ipyflow-core

0.0.201

ipykernel

6.28.0

ipython

8.25.0

ipython-genutils

0.2.0

ipywidgets

7.7.2

isodate

0.7.2

jaraco.collections

5.1.0

jaraco.context

5.3.0

jaraco.functools

4.0.1

jaraco.text

3.12.1

jedi

0.18.1

jeepney

0.7.1

jmespath

0.10.0

joblib

1.2.0

jupyter_client

7.4.9

jupyter_core

5.3.0

keyring

23.5.0

kiwisolver

1.4.4

launchpadlib

1.10.16

lazr.restfulclient

0.14.4

lazr.uri

1.0.6

matplotlib

3.7.2

matplotlib-inline

0.1.6

mlflow-skinny

2.11.4

more-itertools

8.10.0

mypy-extensions

0.4.3

nest-asyncio

1.5.6

numpy

1.23.5

oauthlib

3.2.0

packaging

23.2

pandas

1.5.3

parso

0.8.3

pathspec

0.10.3

patsy

0.5.3

pexpect

4.8.0

pillow

10.3.0

pip

24.2

platformdirs

3.10.0

plotly

5.9.0

prompt_toolkit

3.0.48

proto-plus

1.25.0

protobuf

5.28.3

psutil

5.9.0

psycopg2

2.9.3

ptyprocess

0.7.0

pure-eval

0.2.2

py4j

0.10.9.7

pyarrow

14.0.1

pyasn1

0.4.8

pyasn1-modules

0.2.8

pyccolo

0.0.65

pycparser

2.21

pydantic

1.10.6

Pygments

2.15.1

PyGObject

3.42.1

PyJWT

2.3.0

pyodbc

4.0.39

pyparsing

3.0.9

python-dateutil

2.8.2

python-lsp-jsonrpc

1.1.2

pytz

2022.7

PyYAML

6.0

pyzmq

25.1.2

requests

2.31.0

rsa

4.9

s3transfer

0.10.3

scikit-learn

1.3.0

scipy

1.11.1

seaborn

0.12.2

SecretStorage

3.3.1

setuptools

75.1.0

six

1.16.0

smmap

5.0.1

sqlparse

0.5.1

ssh-import-id

5.11

stack-data

0.2.0

statsmodels

0.14.0

tenacity

8.2.2

threadpoolctl

2.2.0

tokenize-rt

4.2.1

tomli

2.0.1

tornado

6.3.2

traitlets

5.13.0

typeguard

4.3.0

typing_extensions

4.10.0

tzdata

2022.1

ujson

5.4.0

unattended-upgrades

0.1

urllib3

1.26.16

virtualenv

20.26.6

wadllib

1.3.6

wcwidth

0.2.5

wheel

0.38.4

zipp

3.11.0

zstandard

0.23.0