Pular para o conteúdo principal

Databricks Runtime 5.5 para (EoS) LTS ML

nota

O suporte para essa versão do Databricks Runtime foi encerrado. Para saber a data do fim do suporte, consulte Histórico do fim do suporte. Para conhecer todas as versões compatíveis do site Databricks Runtime, consulte Databricks Runtime notas sobre as versões e a compatibilidade.

A Databricks lançou esta versão em julho de 2019. O suporte terminou em 27 de julho de 2021. O Databricks Runtime 5.5 ML Extended Support (EoS) estende o suporte ao 5.5 ML até dezembro de 2021. Ele usa o Ubuntu 18.04.5 LTS em vez do obsoleto Ubuntu 16.04.6 LTS usada na distribuição original do Databricks Runtime 5.5 ML LTS. Ubuntu 16.04.6 O suporte LTS foi encerrado em 1º de abril de 2021.

O Databricks Runtime 5.5 LTS for Machine Learning oferece um ambiente pronto para uso para aprendizado de máquina e ciência de dados com base no Databricks Runtime 5.5 LTS (EoS). Databricks Runtime ML Contém muitas bibliotecas populares de aprendizado de máquina, incluindo TensorFlow, PyTorch, Keras, e XGBoost. Ele também oferece suporte ao treinamento de aprendizagem profunda distribuída usando o Horovod.

Para obter mais informações, incluindo instruções para criar um cluster Databricks Runtime ML , consulte AI e aprendizado de máquina em Databricks.

Novo recurso

O Databricks Runtime 5.5 LTS for Machine Learning foi desenvolvido com base no Databricks Runtime 5.5 LTS. Para obter informações sobre as novidades do Databricks Runtime 5.5 LTS, consulte as notas sobre a versão doDatabricks Runtime 5.5 LTS (EoS).

Além das atualizações da biblioteca, o Databricks Runtime 5.5 LTS for Machine Learning apresenta o seguinte novo recurso:

Melhorias

  • Biblioteca atualizada para aprendizado de máquina

    • O TensorFlow foi atualizado da versão 1.12.0 para a 1.13.1
    • O PyTorch foi atualizado de 0.4.1 para 1.1.0
    • O scikit-learn foi atualizado de 0.19.1 para 0.20.3
  • Operações de nó único para HorovodRunner

    Ativado HorovodRunner para execução somente no nó do driver. Anteriormente, para usar o HorovodRunner, era necessário executar um driver e pelo menos um nó worker. Com essa alteração, agora o senhor pode distribuir o treinamento em um único nó (ou seja, um nó com várias GPUs) e, assim, usar o compute recurso com mais eficiência.

Depreciação

Na Hyperopt biblioteca, descontinuamos as seguintes propriedades de hyperopt.SparkTrials:

  • SparkTrials.successful_trials_count
  • SparkTrials.failed_trials_count
  • SparkTrials.cancelled_trials_count
  • SparkTrials.total_trials_count

e substituiu as propriedades pelas seguintes funções:

  • SparkTrials.count_successful_trials()
  • SparkTrials.count_failed_trials()
  • SparkTrials.count_cancelled_trials()
  • SparkTrials.count_total_trials()

Ambiente do sistema

O ambiente do sistema no Databricks Runtime 5.5 LTS for Machine Learning difere do Databricks Runtime 5.5 da seguinte forma:

biblioteca

As seções a seguir listam as bibliotecas incluídas no Databricks Runtime 5.5 LTS for Machine Learning que diferem das incluídas no Databricks Runtime 5.5.

Biblioteca de primeira linha

Databricks Runtime 5.5 O site LTS for Machine Learning inclui as seguintes bibliotecas de primeira linha:

Python biblioteca

Databricks Runtime 5.5 O LTS for Machine Learning usa o Conda para o gerenciamento do pacote Python. Como resultado, há grandes diferenças na Python biblioteca instalada em comparação com a Databricks Runtime. As seções a seguir descrevem os ambientes Conda para Databricks Runtime 5.5 LTS para clustering de Machine Learning usando Python 2 ou 3 e máquinas habilitadas para CPU ou GPU.

Python 3 em clustering de CPU

YAML
name: null
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=2.0=cpu_0
- _tflow_select=2.3.0=mkl
- absl-py=0.7.1=py36_0
- asn1crypto=0.24.0=py36_0
- astor=0.7.1=py36_0
- backcall=0.1.0=py36_0
- backports=1.0=py_2
- bcrypt=3.1.6=py36h7b6447c_0
- blas=1.0=mkl
- bleach=2.1.3=py36_0
- boto=2.48.0=py36_1
- boto3=1.7.62=py36h28b3542_1
- botocore=1.10.62=py36h28b3542_0
- ca-certificates=2018.03.07=0
- certifi=2018.4.16=py36_0
- cffi=1.11.5=py36he75722e_1
- chardet=3.0.4=py36_1
- click=7.0=py36_0
- cloudpickle=0.8.0=py36_0
- colorama=0.3.9=py36h489cec4_0
- configparser=3.7.3=py36_1
- cryptography=2.2.2=py36h14c3975_0
- cycler=0.10.0=py36h93f1223_0
- cython=0.28.2=py36h14c3975_0
- decorator=4.3.0=py36_0
- docutils=0.14=py36hb0f60f5_0
- entrypoints=0.2.3=py36_2
- et_xmlfile=1.0.1=py36hd6bccc3_0
- flask=1.0.2=py36_1
- freetype=2.8=hab7d2ae_1
- gast=0.2.2=py36_0
- gitdb2=2.0.5=py36_0
- gitpython=2.1.11=py36_0
- gmp=6.1.2=h6c8ec71_1
- grpcio=1.12.1=py36hdbcaa40_0
- gunicorn=19.9.0=py36_0
- h5py=2.8.0=py36h989c5e5_3
- hdf5=1.10.2=hba1933b_1
- html5lib=1.0.1=py36_0
- icu=58.2=h9c2bf20_1
- idna=2.6=py36h82fb2a8_1
- intel-openmp=2018.0.0=8
- ipython=6.4.0=py36_1
- ipython_genutils=0.2.0=py36_0
- itsdangerous=0.24=py36_1
- jdcal=1.4=py36_0
- jedi=0.12.0=py36_1
- jinja2=2.10=py36_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- jsonschema=2.6.0=py36_0
- jupyter_client=5.2.3=py36_0
- jupyter_core=4.4.0=py36_0
- keras=2.2.4=0
- keras-applications=1.0.8=py_0
- keras-base=2.2.4=py36_0
- keras-preprocessing=1.1.0=py_1
- krb5=1.16.1=hc83ff2d_6
- libedit=3.1.20170329=h6b74fdf_2
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=7.3.0=hdf63c60_0
- libgfortran-ng=7.2.0=hdf63c60_3
- libpng=1.6.34=hb9fc6fc_0
- libpq=10.4=h1ad7b7a_0
- libprotobuf=3.8.0=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=7.3.0=hdf63c60_0
- libtiff=4.0.9=he85c1e1_2
- libxgboost=0.90=he6710b0_0
- libxml2=2.9.8=h26e45fe_1
- libxslt=1.1.32=h1312cb7_0
- llvmlite=0.23.1=py36hdbcaa40_0
- lxml=4.2.1=py36h23eabaa_0
- mako=1.0.10=py_0
- markdown=3.1.1=py36_0
- markupsafe=1.0=py36h14c3975_1
- mistune=0.8.3=py36h14c3975_1
- mkl=2019.4=243
- mkl_fft=1.0.12=py36ha843d7b_0
- mkl_random=1.0.2=py36hd81dba3_0
- mock=3.0.5=py36_0
- msgpack-python=0.5.6=py36h6bb024c_1
- nbconvert=5.3.1=py36_0
- nbformat=4.4.0=py36h31c9010_0
- ncurses=6.1=he6710b0_1
- ninja=1.9.0=py36hfd86e86_0
- numba=0.38.0=py36h637b7d7_0
- numpy=1.16.2=py36h7e9f1db_0
- numpy-base=1.16.2=py36hde5b4d6_0
- olefile=0.45.1=py36_0
- openpyxl=2.5.3=py36_0
- openssl=1.0.2o=h14c3975_1
- pandas=0.23.0=py36h637b7d7_0
- pandocfilters=1.4.2=py36_1
- paramiko=2.4.2=py36_0
- parso=0.2.0=py36_0
- pathlib2=2.3.2=py36_0
- patsy=0.5.0=py36_0
- pexpect=4.5.0=py36_0
- pickleshare=0.7.4=py36_0
- pillow=5.1.0=py36h3deb7b8_0
- pip=10.0.1=py36_0
- ply=3.11=py36_0
- prompt_toolkit=1.0.15=py36h17d85b1_0
- protobuf=3.8.0=py36he6710b0_0
- psycopg2=2.7.5=py36hb7f436b_0
- ptyprocess=0.5.2=py36h69acd42_0
- py-xgboost=0.90=py36he6710b0_0
- py-xgboost-cpu=0.90=py36_0
- pyasn1=0.4.5=py_0
- pycparser=2.18=py36_1
- pygments=2.2.0=py36_0
- pynacl=1.3.0=py36h7b6447c_0
- pyopenssl=18.0.0=py36_0
- pyparsing=2.2.0=py36_1
- pysocks=1.6.8=py36_0
- python=3.6.5=hc3d631a_2
- python-dateutil=2.7.3=py36_0
- python-editor=1.0.4=py_0
- pytz=2018.4=py36_0
- pyyaml=5.1=py36h7b6447c_0
- pyzmq=17.0.0=py36h14c3975_3
- readline=7.0=h7b6447c_5
- requests=2.18.4=py36he2e5f8d_1
- s3transfer=0.1.13=py36_0
- scikit-learn=0.20.3=py36hd81dba3_0
- scipy=1.1.0=py36h7c811a0_2
- setuptools=39.1.0=py36_0
- simplegeneric=0.8.1=py36_2
- simplejson=3.16.0=py36h14c3975_0
- singledispatch=3.4.0.3=py36_0
- six=1.11.0=py36_1
- smmap2=2.0.5=py36_0
- sqlite=3.23.1=he433501_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py36h035aef0_0
- tabulate=0.8.3=py36_0
- tensorboard=1.13.1=py36hf484d3e_0
- tensorflow=1.13.1=mkl_py36h27d456a_0
- tensorflow-base=1.13.1=mkl_py36h7ce6ba3_0
- tensorflow-estimator=1.13.0=py_0
- tensorflow-mkl=1.13.1=h4fcabd2_0
- termcolor=1.1.0=py36_1
- testpath=0.3.1=py36h8cadb63_0
- tk=8.6.7=hc745277_3
- tornado=5.0.2=py36h14c3975_0
- traitlets=4.3.2=py36_0
- urllib3=1.22=py36hbe7ace6_0
- virtualenv=16.0.0=py36_0
- wcwidth=0.1.7=py36hdf4376a_0
- webencodings=0.5.1=py36_1
- werkzeug=0.14.1=py36_0
- wheel=0.31.1=py36_0
- wrapt=1.11.1=py36h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.2.5=hf484d3e_1
- zlib=1.2.11=h7b6447c_3
- pytorch-cpu=1.1.0=py3.6_cpu_0
- torchvision-cpu=0.3.0=py36_cuNone_1
- pip:
- databricks-cli==0.8.7
- docker==4.0.2
- fusepy==2.0.4
- future==0.17.1
- horovod==0.16.4
- hyperopt==0.1.2.db6
- kiwisolver==1.1.0
- matplotlib==2.2.2
- mleap==0.8.1
- mlflow==1.0.0
- msgpack==0.5.6
- networkx==2.2
- nose==1.3.7
- nose-exclude==0.5.0
- psutil==5.6.3
- pyarrow==0.13.0
- pymongo==3.8.0
- querystring-parser==1.2.3
- seaborn==0.8.1
- tensorboardx==1.7
- torchvision==0.3.0
- tqdm==4.32.2
- websocket-client==0.56.0
prefix: /databricks/python3

Python 3 em clustering de GPU

YAML
name: null
channels:
- pytorch
- Databricks
- defaults
dependencies:
- tensorflow=1.13.1.db1=gpu_py36h2903d8e_0
- tensorflow-base=1.13.1.db1=gpu_py36he292aa2_0
- tensorflow-gpu=1.13.1.db1=h0d30ee6_0
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=1.0=gpu_0
- _tflow_select=2.1.0=gpu
- absl-py=0.7.1=py36_0
- asn1crypto=0.24.0=py36_0
- astor=0.7.1=py36_0
- backcall=0.1.0=py36_0
- backports=1.0=py_2
- bcrypt=3.1.6=py36h7b6447c_0
- blas=1.0=mkl
- bleach=2.1.3=py36_0
- boto=2.48.0=py36_1
- boto3=1.7.62=py36h28b3542_1
- botocore=1.10.62=py36h28b3542_0
- ca-certificates=2018.03.07=0
- certifi=2018.4.16=py36_0
- cffi=1.11.5=py36he75722e_1
- chardet=3.0.4=py36_1
- click=7.0=py36_0
- cloudpickle=0.8.0=py36_0
- colorama=0.3.9=py36h489cec4_0
- configparser=3.7.3=py36_1
- cryptography=2.2.2=py36h14c3975_0
- cudnn=7.6.0=cuda10.0_0
- cupti=10.0.130=0
- cycler=0.10.0=py36_0
- cython=0.28.2=py36h14c3975_0
- decorator=4.3.0=py36_0
- docutils=0.14=py36_0
- entrypoints=0.2.3=py36_2
- et_xmlfile=1.0.1=py36hd6bccc3_0
- flask=1.0.2=py36_1
- freetype=2.8=hab7d2ae_1
- gast=0.2.2=py36_0
- gitdb2=2.0.5=py36_0
- gitpython=2.1.11=py36_0
- gmp=6.1.2=h6c8ec71_1
- grpcio=1.12.1=py36hdbcaa40_0
- gunicorn=19.9.0=py36_0
- h5py=2.8.0=py36h989c5e5_3
- hdf5=1.10.2=hba1933b_1
- html5lib=1.0.1=py36_0
- icu=58.2=h9c2bf20_1
- idna=2.6=py36h82fb2a8_1
- intel-openmp=2018.0.0=8
- ipython=6.4.0=py36_1
- ipython_genutils=0.2.0=py36hb52b0d5_0
- itsdangerous=0.24=py36_1
- jdcal=1.4=py36_0
- jedi=0.12.0=py36_1
- jinja2=2.10=py36_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- jsonschema=2.6.0=py36_0
- jupyter_client=5.2.3=py36_0
- jupyter_core=4.4.0=py36_0
- keras=2.2.4=0
- keras-applications=1.0.8=py_0
- keras-base=2.2.4=py36_0
- keras-preprocessing=1.1.0=py_1
- krb5=1.16.1=hc83ff2d_6
- libedit=3.1.20170329=h6b74fdf_2
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=7.3.0=hdf63c60_0
- libgfortran-ng=7.2.0=hdf63c60_3
- libpng=1.6.34=hb9fc6fc_0
- libpq=10.4=h1ad7b7a_0
- libprotobuf=3.8.0=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=7.3.0=hdf63c60_0
- libtiff=4.0.9=he85c1e1_2
- libxgboost=0.90=h688424c_0
- libxml2=2.9.8=h26e45fe_1
- libxslt=1.1.32=h1312cb7_0
- llvmlite=0.23.1=py36hdbcaa40_0
- lxml=4.2.1=py36h23eabaa_0
- mako=1.0.10=py_0
- markdown=3.1.1=py36_0
- markupsafe=1.0=py36h14c3975_1
- mistune=0.8.3=py36h14c3975_1
- mkl=2019.4=243
- mkl_fft=1.0.12=py36ha843d7b_0
- mkl_random=1.0.2=py36hd81dba3_0
- mock=3.0.5=py36_0
- msgpack-python=0.5.6=py36h6bb024c_1
- nbconvert=5.3.1=py36_0
- nbformat=4.4.0=py36h31c9010_0
- ncurses=6.1=he6710b0_1
- ninja=1.9.0=py36hfd86e86_0
- numba=0.38.0=py36h637b7d7_0
- numpy=1.16.2=py36h7e9f1db_0
- numpy-base=1.16.2=py36hde5b4d6_0
- olefile=0.45.1=py36_0
- openpyxl=2.5.3=py36_0
- openssl=1.0.2o=h14c3975_1
- pandas=0.23.0=py36h637b7d7_0
- pandocfilters=1.4.2=py36_1
- paramiko=2.4.2=py36_0
- parso=0.2.0=py36_0
- pathlib2=2.3.2=py36_0
- patsy=0.5.0=py36_0
- pexpect=4.5.0=py36_0
- pickleshare=0.7.4=py36h63277f8_0
- pillow=5.1.0=py36h3deb7b8_0
- pip=10.0.1=py36_0
- ply=3.11=py36_0
- prompt_toolkit=1.0.15=py36_0
- protobuf=3.8.0=py36he6710b0_0
- psycopg2=2.7.5=py36hb7f436b_0
- ptyprocess=0.5.2=py36h69acd42_0
- py-xgboost=0.90=py36h688424c_0
- py-xgboost-gpu=0.90=py36h28bbb66_0
- pyasn1=0.4.5=py_0
- pycparser=2.18=py36_1
- pygments=2.2.0=py36_0
- pynacl=1.3.0=py36h7b6447c_0
- pyopenssl=18.0.0=py36_0
- pyparsing=2.2.0=py36_1
- pysocks=1.6.8=py36_0
- python=3.6.5=hc3d631a_2
- python-dateutil=2.7.3=py36_0
- python-editor=1.0.4=py_0
- pytz=2018.4=py36_0
- pyyaml=5.1=py36h7b6447c_0
- pyzmq=17.0.0=py36h14c3975_3
- readline=7.0=h7b6447c_5
- requests=2.18.4=py36he2e5f8d_1
- s3transfer=0.1.13=py36_0
- scikit-learn=0.20.3=py36hd81dba3_0
- scipy=1.1.0=py36h7c811a0_2
- setuptools=39.1.0=py36_0
- simplegeneric=0.8.1=py36_2
- simplejson=3.16.0=py36h14c3975_0
- singledispatch=3.4.0.3=py36h7a266c3_0
- six=1.11.0=py36_1
- smmap2=2.0.5=py36_0
- sqlite=3.23.1=he433501_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py36h035aef0_0
- tabulate=0.8.3=py36_0
- tensorboard=1.13.1=py36hf484d3e_0
- tensorflow-estimator=1.13.0=py_0
- termcolor=1.1.0=py36_1
- testpath=0.3.1=py36_0
- tk=8.6.7=hc745277_3
- tornado=5.0.2=py36h14c3975_0
- traitlets=4.3.2=py36h674d592_0
- urllib3=1.22=py36hbe7ace6_0
- virtualenv=16.0.0=py36_0
- wcwidth=0.1.7=py36hdf4376a_0
- webencodings=0.5.1=py36_1
- werkzeug=0.14.1=py36_0
- wheel=0.31.1=py36_0
- wrapt=1.11.1=py36h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.2.5=hf484d3e_1
- zlib=1.2.11=h7b6447c_3
- pytorch=1.1.0=py3.6_cuda10.0.130_cudnn7.5.1_0
- torchvision=0.3.0=py36_cu10.0.130_1
- pip:
- databricks-cli==0.8.7
- docker==4.0.2
- fusepy==2.0.4
- future==0.17.1
- horovod==0.16.4
- hyperopt==0.1.2.db6
- kiwisolver==1.1.0
- matplotlib==2.2.2
- mleap==0.8.1
- mlflow==1.0.0
- msgpack==0.5.6
- networkx==2.2
- nose==1.3.7
- nose-exclude==0.5.0
- psutil==5.6.3
- pyarrow==0.13.0
- pymongo==3.8.0
- querystring-parser==1.2.3
- seaborn==0.8.1
- tensorboardx==1.7
- tqdm==4.32.2
- websocket-client==0.56.0
prefix: /databricks/python3

Python 2 em clustering de CPU

YAML
name: null
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=2.0=cpu_0
- _tflow_select=2.3.0=mkl
- absl-py=0.7.1=py27_0
- asn1crypto=0.24.0=py27_0
- astor=0.7.1=py27_0
- backports=1.0=py_2
- backports.shutil_get_terminal_size=1.0.0=py27_2
- backports.weakref=1.0.post1=py_1
- backports_abc=0.5=py_0
- bcrypt=3.1.6=py27h7b6447c_0
- blas=1.0=mkl
- bleach=2.1.3=py27_0
- boto=2.48.0=py27_1
- boto3=1.7.62=py27h28b3542_1
- botocore=1.10.62=py27h28b3542_0
- ca-certificates=2018.03.07=0
- certifi=2018.4.16=py27_0
- cffi=1.11.5=py27he75722e_1
- chardet=3.0.4=py27_1
- click=7.0=py27_0
- cloudpickle=0.8.0=py27_0
- colorama=0.3.9=py27h5cde069_0
- configparser=3.7.3=py27_1
- cryptography=2.2.2=py27h14c3975_0
- cycler=0.10.0=py27hc7354d3_0
- cython=0.28.2=py27h14c3975_0
- decorator=4.3.0=py27_0
- docutils=0.14=py27_0
- entrypoints=0.2.3=py27_2
- enum34=1.1.6=py27_1
- et_xmlfile=1.0.1=py27_0
- flask=1.0.2=py27_1
- freetype=2.8=hab7d2ae_1
- funcsigs=1.0.2=py27_0
- functools32=3.2.3.2=py27_1
- future=0.17.1=py27_0
- futures=3.2.0=py27_0
- gast=0.2.2=py27_0
- gitdb2=2.0.5=py27_0
- gitpython=2.1.11=py27_0
- gmp=6.1.2=h6c8ec71_1
- grpcio=1.12.1=py27hdbcaa40_0
- gunicorn=19.9.0=py27_0
- h5py=2.8.0=py27h989c5e5_3
- hdf5=1.10.2=hba1933b_1
- html5lib=1.0.1=py27_0
- icu=58.2=h9c2bf20_1
- idna=2.6=py27h5722d68_1
- intel-openmp=2018.0.0=8
- ipaddress=1.0.22=py27_0
- ipython=5.7.0=py27_0
- ipython_genutils=0.2.0=py27_0
- itsdangerous=0.24=py27_1
- jdcal=1.4=py27_0
- jinja2=2.10=py27_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- jsonschema=2.6.0=py27h7ed5aa4_0
- jupyter_client=5.2.3=py27_0
- jupyter_core=4.4.0=py27_0
- keras=2.2.4=0
- keras-applications=1.0.8=py_0
- keras-base=2.2.4=py27_0
- keras-preprocessing=1.1.0=py_1
- krb5=1.16.1=hc83ff2d_6
- libedit=3.1.20170329=h6b74fdf_2
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=7.3.0=hdf63c60_0
- libgfortran-ng=7.2.0=hdf63c60_3
- libpng=1.6.34=hb9fc6fc_0
- libpq=10.4=h1ad7b7a_0
- libprotobuf=3.8.0=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=7.3.0=hdf63c60_0
- libtiff=4.0.9=he85c1e1_2
- libxgboost=0.90=he6710b0_0
- libxml2=2.9.8=h26e45fe_1
- libxslt=1.1.32=h1312cb7_0
- linecache2=1.0.0=py27_0
- llvmlite=0.23.1=py27hdbcaa40_0
- lxml=4.2.1=py27h23eabaa_0
- mako=1.0.10=py_0
- markdown=3.1.1=py27_0
- markupsafe=1.0=py27h14c3975_1
- mistune=0.8.3=py27h14c3975_1
- mkl=2019.4=243
- mkl_fft=1.0.12=py27ha843d7b_0
- mkl_random=1.0.2=py27hd81dba3_0
- mock=3.0.5=py27_0
- msgpack-python=0.5.6=py27h6bb024c_1
- nbconvert=5.3.1=py27_0
- nbformat=4.4.0=py27hed7f2b2_0
- ncurses=6.1=he6710b0_1
- ninja=1.9.0=py27hfd86e86_0
- numba=0.38.0=py27h637b7d7_0
- numpy=1.16.2=py27h7e9f1db_0
- numpy-base=1.16.2=py27hde5b4d6_0
- olefile=0.45.1=py27_0
- openpyxl=2.5.3=py27_0
- openssl=1.0.2o=h14c3975_1
- pandas=0.23.0=py27h637b7d7_0
- pandocfilters=1.4.2=py27_1
- paramiko=2.4.2=py27_0
- pathlib2=2.3.2=py27_0
- patsy=0.5.0=py27_0
- pexpect=4.5.0=py27_0
- pickleshare=0.7.4=py27_0
- pillow=5.1.0=py27h3deb7b8_0
- pip=10.0.1=py27_0
- ply=3.11=py27_0
- prompt_toolkit=1.0.15=py27_0
- protobuf=3.8.0=py27he6710b0_0
- psycopg2=2.7.5=py27hb7f436b_0
- ptyprocess=0.5.2=py27h4ccb14c_0
- py-xgboost=0.90=py27he6710b0_0
- py-xgboost-cpu=0.90=py27_0
- pyasn1=0.4.5=py_0
- pycparser=2.18=py27_1
- pygments=2.2.0=py27_0
- pynacl=1.3.0=py27h7b6447c_0
- pyopenssl=18.0.0=py27_0
- pyparsing=2.2.0=py27_1
- pysocks=1.6.8=py27_0
- python=2.7.15=h1571d57_0
- python-dateutil=2.7.3=py27_0
- python-editor=1.0.4=py_0
- pytz=2018.4=py27_0
- pyyaml=5.1=py27h7b6447c_0
- pyzmq=17.0.0=py27h14c3975_3
- readline=7.0=h7b6447c_5
- requests=2.18.4=py27hc5b0589_1
- s3transfer=0.1.13=py27_0
- scandir=1.7=py27h14c3975_0
- scikit-learn=0.20.3=py27hd81dba3_0
- scipy=1.1.0=py27h7c811a0_2
- setuptools=39.1.0=py27_0
- simplegeneric=0.8.1=py27_2
- simplejson=3.16.0=py27h14c3975_0
- singledispatch=3.4.0.3=py27_0
- six=1.11.0=py27_1
- smmap2=2.0.5=py27_0
- sqlite=3.23.1=he433501_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py27h035aef0_0
- tabulate=0.8.3=py27_0
- tensorboard=1.13.1=py27hf484d3e_0
- tensorflow=1.13.1=mkl_py27h74ee40f_0
- tensorflow-base=1.13.1=mkl_py27h7ce6ba3_0
- tensorflow-estimator=1.13.0=py_0
- tensorflow-mkl=1.13.1=h4fcabd2_0
- termcolor=1.1.0=py27_1
- testpath=0.3.1=py27hc38d2c4_0
- tk=8.6.7=hc745277_3
- tornado=5.0.2=py27h14c3975_0
- traceback2=1.4.0=py27_0
- traitlets=4.3.2=py27_0
- unittest2=1.1.0=py27_0
- urllib3=1.22=py27ha55213b_0
- virtualenv=16.0.0=py27_0
- wcwidth=0.1.7=py27h9e3e1ab_0
- webencodings=0.5.1=py27_1
- werkzeug=0.14.1=py27_0
- wheel=0.31.1=py27_0
- wrapt=1.11.1=py27h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.2.5=hf484d3e_1
- zlib=1.2.11=h7b6447c_3
- pytorch-cpu=1.1.0=py2.7_cpu_0
- torchvision-cpu=0.3.0=py27_cuNone_1
- pip:
- backports.functools-lru-cache==1.5
- backports.ssl-match-hostname==3.7.0.1
- databricks-cli==0.8.7
- docker==4.0.2
- fusepy==2.0.4
- horovod==0.16.4
- hyperopt==0.1.2.db6
- kiwisolver==1.1.0
- matplotlib==2.2.2
- mleap==0.8.1
- mlflow==1.0.0
- msgpack==0.5.6
- networkx==2.2
- nose==1.3.7
- nose-exclude==0.5.0
- psutil==5.6.3
- pyarrow==0.13.0
- pymongo==3.8.0
- querystring-parser==1.2.3
- seaborn==0.8.1
- subprocess32==3.5.4
- tensorboardx==1.7
- torchvision==0.3.0
- tqdm==4.32.2
- websocket-client==0.56.0
prefix: /databricks/python2

Python 2 em clustering de GPU

YAML
name: null
channels:
- Databricks
- pytorch
- defaults
dependencies:
- tensorflow=1.13.1.db1=gpu_py27h8e347d7_0
- tensorflow-base=1.13.1.db1=gpu_py27he292aa2_0
- tensorflow-gpu=1.13.1.db1=h0d30ee6_0
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=1.0=gpu_0
- _tflow_select=2.1.0=gpu
- absl-py=0.7.1=py27_0
- asn1crypto=0.24.0=py27_0
- astor=0.7.1=py27_0
- backports=1.0=py_2
- backports.shutil_get_terminal_size=1.0.0=py27_2
- backports.weakref=1.0.post1=py_1
- backports_abc=0.5=py_0
- bcrypt=3.1.6=py27h7b6447c_0
- blas=1.0=mkl
- bleach=2.1.3=py27_0
- boto=2.48.0=py27_1
- boto3=1.7.62=py27h28b3542_1
- botocore=1.10.62=py27h28b3542_0
- ca-certificates=2018.03.07=0
- certifi=2018.4.16=py27_0
- cffi=1.11.5=py27he75722e_1
- chardet=3.0.4=py27_1
- click=7.0=py27_0
- cloudpickle=0.8.0=py27_0
- colorama=0.3.9=py27_0
- configparser=3.7.3=py27_1
- cryptography=2.2.2=py27h14c3975_0
- cudnn=7.6.0=cuda10.0_0
- cupti=10.0.130=0
- cycler=0.10.0=py27_0
- cython=0.28.2=py27h14c3975_0
- decorator=4.3.0=py27_0
- docutils=0.14=py27hae222c1_0
- entrypoints=0.2.3=py27_2
- enum34=1.1.6=py27_1
- et_xmlfile=1.0.1=py27h75840f5_0
- flask=1.0.2=py27_1
- freetype=2.8=hab7d2ae_1
- funcsigs=1.0.2=py27_0
- functools32=3.2.3.2=py27_1
- future=0.17.1=py27_0
- futures=3.2.0=py27_0
- gast=0.2.2=py27_0
- gitdb2=2.0.5=py27_0
- gitpython=2.1.11=py27_0
- gmp=6.1.2=h6c8ec71_1
- grpcio=1.12.1=py27hdbcaa40_0
- gunicorn=19.9.0=py27_0
- h5py=2.8.0=py27h989c5e5_3
- hdf5=1.10.2=hba1933b_1
- html5lib=1.0.1=py27_0
- icu=58.2=h9c2bf20_1
- idna=2.6=py27h5722d68_1
- intel-openmp=2018.0.0=8
- ipaddress=1.0.22=py27_0
- ipython=5.7.0=py27_0
- ipython_genutils=0.2.0=py27h89fb69b_0
- itsdangerous=0.24=py27_1
- jdcal=1.4=py27_0
- jinja2=2.10=py27_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- jsonschema=2.6.0=py27h7ed5aa4_0
- jupyter_client=5.2.3=py27_0
- jupyter_core=4.4.0=py27_0
- keras=2.2.4=0
- keras-applications=1.0.8=py_0
- keras-base=2.2.4=py27_0
- keras-preprocessing=1.1.0=py_1
- krb5=1.16.1=hc83ff2d_6
- libedit=3.1.20170329=h6b74fdf_2
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=7.3.0=hdf63c60_0
- libgfortran-ng=7.2.0=hdf63c60_3
- libpng=1.6.34=hb9fc6fc_0
- libpq=10.4=h1ad7b7a_0
- libprotobuf=3.8.0=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=7.3.0=hdf63c60_0
- libtiff=4.0.9=he85c1e1_2
- libxgboost=0.90=h688424c_0
- libxml2=2.9.8=h26e45fe_1
- libxslt=1.1.32=h1312cb7_0
- linecache2=1.0.0=py27_0
- llvmlite=0.23.1=py27hdbcaa40_0
- lxml=4.2.1=py27h23eabaa_0
- mako=1.0.10=py_0
- markdown=3.1.1=py27_0
- markupsafe=1.0=py27h14c3975_1
- mistune=0.8.3=py27h14c3975_1
- mkl=2019.4=243
- mkl_fft=1.0.12=py27ha843d7b_0
- mkl_random=1.0.2=py27hd81dba3_0
- mock=3.0.5=py27_0
- msgpack-python=0.5.6=py27h6bb024c_1
- nbconvert=5.3.1=py27_0
- nbformat=4.4.0=py27hed7f2b2_0
- ncurses=6.1=he6710b0_1
- ninja=1.9.0=py27hfd86e86_0
- numba=0.38.0=py27h637b7d7_0
- numpy=1.16.2=py27h7e9f1db_0
- numpy-base=1.16.2=py27hde5b4d6_0
- olefile=0.45.1=py27_0
- openpyxl=2.5.3=py27_0
- openssl=1.0.2o=h14c3975_1
- pandas=0.23.0=py27h637b7d7_0
- pandocfilters=1.4.2=py27_1
- paramiko=2.4.2=py27_0
- pathlib2=2.3.2=py27_0
- patsy=0.5.0=py27_0
- pexpect=4.5.0=py27_0
- pickleshare=0.7.4=py27h09770e1_0
- pillow=5.1.0=py27h3deb7b8_0
- pip=10.0.1=py27_0
- ply=3.11=py27_0
- prompt_toolkit=1.0.15=py27_0
- protobuf=3.8.0=py27he6710b0_0
- psycopg2=2.7.5=py27hb7f436b_0
- ptyprocess=0.5.2=py27h4ccb14c_0
- py-xgboost=0.90=py27h688424c_0
- py-xgboost-gpu=0.90=py27h28bbb66_0
- pyasn1=0.4.5=py_0
- pycparser=2.18=py27_1
- pygments=2.2.0=py27_0
- pynacl=1.3.0=py27h7b6447c_0
- pyopenssl=18.0.0=py27_0
- pyparsing=2.2.0=py27_1
- pysocks=1.6.8=py27_0
- python=2.7.15=h1571d57_0
- python-dateutil=2.7.3=py27_0
- python-editor=1.0.4=py_0
- pytz=2018.4=py27_0
- pyyaml=5.1=py27h7b6447c_0
- pyzmq=17.0.0=py27h14c3975_3
- readline=7.0=h7b6447c_5
- requests=2.18.4=py27hc5b0589_1
- s3transfer=0.1.13=py27_0
- scandir=1.7=py27h14c3975_0
- scikit-learn=0.20.3=py27hd81dba3_0
- scipy=1.1.0=py27h7c811a0_2
- setuptools=39.1.0=py27_0
- simplegeneric=0.8.1=py27_2
- simplejson=3.16.0=py27h14c3975_0
- singledispatch=3.4.0.3=py27h9bcb476_0
- six=1.11.0=py27_1
- smmap2=2.0.5=py27_0
- sqlite=3.23.1=he433501_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py27h035aef0_0
- tabulate=0.8.3=py27_0
- tensorboard=1.13.1=py27hf484d3e_0
- tensorflow-estimator=1.13.0=py_0
- termcolor=1.1.0=py27_1
- testpath=0.3.1=py27_0
- tk=8.6.7=hc745277_3
- tornado=5.0.2=py27h14c3975_0
- traceback2=1.4.0=py27_0
- traitlets=4.3.2=py27hd6ce930_0
- unittest2=1.1.0=py27_0
- urllib3=1.22=py27ha55213b_0
- virtualenv=16.0.0=py27_0
- wcwidth=0.1.7=py27_0
- webencodings=0.5.1=py27_1
- werkzeug=0.14.1=py27_0
- wheel=0.31.1=py27_0
- wrapt=1.11.1=py27h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zeromq=4.2.5=hf484d3e_1
- zlib=1.2.11=h7b6447c_3
- pytorch=1.1.0=py2.7_cuda10.0.130_cudnn7.5.1_0
- torchvision=0.3.0=py27_cu10.0.130_1
- pip:
- backports.functools-lru-cache==1.5
- backports.ssl-match-hostname==3.7.0.1
- databricks-cli==0.8.7
- docker==4.0.2
- fusepy==2.0.4
- horovod==0.16.4
- hyperopt==0.1.2.db6
- kiwisolver==1.1.0
- matplotlib==2.2.2
- mleap==0.8.1
- mlflow==1.0.0
- msgpack==0.5.6
- networkx==2.2
- nose==1.3.7
- nose-exclude==0.5.0
- psutil==5.6.3
- pyarrow==0.13.0
- pymongo==3.8.0
- querystring-parser==1.2.3
- seaborn==0.8.1
- subprocess32==3.5.4
- tensorboardx==1.7
- tqdm==4.32.2
- websocket-client==0.56.0
prefix: /databricks/python2

Spark pacote contendo os módulos Python

Spark pacote

Módulo Python

Versão

graphframes

graphframes

0.7.0-db1-spark2.4

aprendizagem profunda

cintilante

1.5.0-db4-spark2.4

tensorframes

tensorframes

0.7.0-s_2.11

R biblioteca

A biblioteca R é idêntica à biblioteca R em Databricks Runtime 5.5.

Java e biblioteca ( 2.11 clustering) Scala Scala

Além de Java e Scala biblioteca em Databricks Runtime 5.5, Databricks Runtime 5.5 LTS for Machine Learning contém os seguintes JARs:

ID do grupo

ID do artefato

Versão

com.databricks

aprendizagem profunda

1.5.0-db4-spark2.4

com.typesafe.akka

também conhecido como actor_2.11

2.3.11

ml.combust.mleap

mleap-databricks-runtime_2.11

0,13,0

ml.dmlc

xgboost4j

0,90

ml.dmlc

xgboost4j-Spark

0,90

org.graphframes

quadros de gráfico_2.11

0.7.0-db1-spark2.4

org.tensorflow

libtensorflow

1.13.1

org.tensorflow

libtensorflow_jni

1.13.1

org.tensorflow

conector de fluxo tensor de faísca_2.11

1.13.1

org.tensorflow

TensorFlow

1.13.1

org.tensorframes

tensorframes

0.7.0-s_2.11