Skip to main content

Serverless environment version 3

This article outlines the system environment information for serverless environment version 3.

To ensure compatibility for the application, serverless workloads use a versioned API, known as the environment version, which remains compatible with newer server versions.

You can select the environment version using the Environment side panel in your serverless notebooks. See Select an environment version.

New features and improvements

The following new features and improvements are available in serverless environment 3.

Databricks Connect upgraded to 16.3

June 13, 2025

Use the features and improvements available on Databricks Connect for Databricks Runtime 16.3. See Databricks Connect release notes.

Improved Python syntax error highlighting

June 13, 2025

Python syntax error highlighting will see the following improvements:

  • Faster error handling latency.
  • Support for Python type error highlighting.
  • Linter configurability through pyproject.toml files.

See Python error highlighting.

Git CLI support in web terminal and notebook

June 13, 2025

You can now use the Git CLI in a serverless notebook and the serverless notebook's web terminal.

Serverless GPU compute now available

June 13, 2025

You can now use serverless GPU compute to train and fine-tune custom models. When running on serverless GPU compute, your environment includes all libraries available in environment version 3, in addition to the following packages:

  • CUDA 12.4
  • torch 2.6.0
  • torchvision 0.21.0

For instructions on using serverless GPUs, see Serverless GPU compute.

Behavioral change regarding conflicting environment versions

June 13, 2025

In cases where a serverless environment version is declared in both the notebook's Environment panel and in a custom base environment file, the base environment's version takes precedence unless both declared versions are under version 3, in which case the notebook's version is used.

For example:

  • If the notebook uses v1 and the base environment uses v3, the workload will use v3.
  • If the notebook uses v1 and the base environment uses v2, the workload will use v1.
  • If the notebook uses v3 and the base environment uses v1, the workload will use v1.
  • If the notebook uses v2 and the base environment uses v1, the workload will use v2.

System environment

  • Operating System: Ubuntu 24.04.2 LTS
  • Python: 3.12.3
  • Databricks Connect: 16.3.2

Installed Python libraries

Library

Version

Library

Version

Library

Version

annotated-types

0.7.0

anyio

4.2.0

asttokens

2.0.5

astunparse

1.6.3

autocommand

2.2.2

azure-core

1.33.0

azure-storage-blob

12.23.0

azure-storage-file-datalake

12.17.0

backports.tarfile

1.2.0

black

24.4.2

blinker

1.7.0

boto3

1.34.69

botocore

1.34.69

cachetools

5.3.3

certifi

2024.6.2

cffi

1.16.0

chardet

4.0.0

charset-normalizer

2.0.4

click

8.1.7

cloudpickle

3.0.0

comm

0.2.1

contourpy

1.2.0

cryptography

42.0.5

cycler

0.11.0

Cython

3.0.11

databricks-connect

16.3.2

databricks-sdk

0.49.0

dbus-python

1.3.2

debugpy

1.6.7

decorator

5.1.1

Deprecated

1.2.18

dill

0.3.8

distlib

0.3.8

executing

0.8.3

facets-overview

1.1.1

fastapi

0.115.12

filelock

3.15.4

fonttools

4.51.0

gitdb

4.0.11

GitPython

3.1.37

google-api-core

2.20.0

google-auth

2.38.0

google-cloud-core

2.4.3

google-cloud-storage

3.1.0

google-crc32c

1.7.1

google-resumable-media

2.7.2

googleapis-common-protos

1.69.2

grpcio

1.71.0

grpcio-status

1.71.0

h11

0.14.0

httplib2

0.20.4

idna

3.7

importlib-metadata

7.0.1

inflect

7.3.1

iniconfig

1.1.1

ipyflow-core

0.0.206

ipykernel

6.29.5

ipython

8.32.0

ipython-genutils

0.2.0

ipywidgets

7.7.2

isodate

0.7.2

jaraco.collections

5.1.0

jaraco.context

5.3.0

jaraco.functools

4.0.1

jaraco.text

3.12.1

jedi

0.19.1

jmespath

1.0.1

joblib

1.4.2

jupyter_client

8.6.0

jupyter_core

5.7.2

kiwisolver

1.4.4

launchpadlib

1.11.0

lazr.restfulclient

0.14.6

lazr.uri

1.0.6

matplotlib

3.8.4

matplotlib-inline

0.1.6

mlflow-skinny

2.21.3

more-itertools

10.3.0

mypy-extensions

1.0.0

nest-asyncio

1.6.0

numpy

1.26.4

oauthlib

3.2.2

opentelemetry-api

1.31.1

opentelemetry-sdk

1.31.1

opentelemetry-semantic-conventions

0.52b1

packaging

24.1

pandas

1.5.3

parso

0.8.3

pathspec

0.10.3

patsy

0.5.6

pexpect

4.8.0

pillow

10.3.0

pip

25.0.1

platformdirs

3.10.0

plotly

5.22.0

pluggy

1.5.0

prompt-toolkit

3.0.43

proto-plus

1.26.1

protobuf

5.29.4

psutil

5.9.0

psycopg2

2.9.3

ptyprocess

0.7.0

pure-eval

0.2.2

py4j

0.10.9.7

pyarrow

15.0.2

pyasn1

0.4.8

pyasn1-modules

0.2.8

pyccolo

0.0.68

pycparser

2.21

pydantic

2.8.2

pydantic_core

2.20.1

Pygments

2.15.1

PyGObject

3.48.2

PyJWT

2.7.0

pyodbc

5.0.1

pyparsing

3.0.9

pytest

8.3.0

python-dateutil

2.9.0.post0

python-lsp-jsonrpc

1.1.2

pytz

2024.1

PyYAML

6.0.1

pyzmq

25.1.2

requests

2.32.2

rsa

4.9

s3transfer

0.10.4

scikit-learn

1.4.2

scipy

1.13.1

seaborn

0.13.2

setuptools

75.8.0

six

1.16.0

smmap

5.0.0

sniffio

1.3.0

sqlparse

0.5.3

ssh-import-id

5.11

stack-data

0.2.0

starlette

0.46.1

statsmodels

0.14.2

tenacity

8.2.2

threadpoolctl

2.2.0

tokenize-rt

4.2.1

tomli

2.0.1

tornado

6.4.1

traitlets

5.14.3

typeguard

4.3.0

typing_extensions

4.11.0

tzdata

2024.1

ujson

5.10.0

unattended-upgrades

0.1

urllib3

2.2.2

uvicorn

0.34.0

virtualenv

20.29.2

wadllib

1.3.6

wcwidth

0.2.5

wheel

0.45.1

wrapt

1.14.1

zipp

3.17.0

zstandard

0.23.0