Databricks Runtime 6.0 for ML (EoS)
Note
Support for this Databricks Runtime version has ended. For the end-of-support date, see End-of-support history. For all supported Databricks Runtime versions, see Databricks Runtime release notes versions and compatibility.
Databricks released this version in October 2019.
Databricks Runtime 6.0 for Machine Learning provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 6.0 (EoS). Databricks Runtime ML contains many popular machine learning libraries, including TensorFlow, PyTorch, Keras, and XGBoost. It also supports distributed deep learning training using Horovod.
For more information, including instructions for creating a Databricks Runtime ML cluster, see AI and Machine Learning on Databricks.
New features
Databricks Runtime 6.0 ML is built on top of Databricks Runtime 6.0. For information on what’s new in Databricks Runtime 6.0, see the Databricks Runtime 6.0 (EoS) release notes.
Query MLflow experiment data at scale using the new MLflow Spark data source
The Spark data source for MLflow experiments now provides a standard API to load MLflow experiment run data. This enables large-scale querying and analysis of MLflow experiment data using DataFrame APIs. For a given experiment, the DataFrame contains run_ids, metrics, params, tags, start_time, end_time, status, and the artifact_uri for artifacts. See MLflow experiment.
Improvements
Hyperopt GA
Hyperopt on Databricks is now generally available. Notable improvements since public preview include support for MLflow logging on Spark workers, correct handling of PySpark broadcast variables, as well as a new guide on model selection using Hyperopt. We also fixed small bugs in log messages, error handling, UI, and made our docs more reader friendly. For details, see the Hyperopt documentation.
We have updated how Databricks logs Hyperopt experiments so that you can now log a custom metric during Hyperopt runs by passing the metric to the
mlflow.log_metric
function (see log_metric). This is useful if you want to log custom metrics in addition to loss, which is logged by default when thehyperopt.fmin
function is called.MLflow
Added MLflow Java Client 1.2.0
MLflow is now promoted as a top-tier library
Upgraded machine learning libraries
Horovod upgraded from 0.16.4 to 0.18.1
MLflow upgraded from 1.0.0 to 1.2.0
Anaconda distribution upgraded from 5.2.0 to 2019.03
Removal
Databricks ML Model Export is removed. Use MLeap for importing and exporting models instead.
In the Hyperopt library, the following properties of
hyperopt.SparkTrials
are removed:SparkTrials.successful_trials_count
SparkTrials.failed_trials_count
SparkTrials.cancelled_trials_count
SparkTrials.total_trials_count
They are replaced with the following functions:
SparkTrials.count_successful_trials()
SparkTrials.count_failed_trials()
SparkTrials.count_cancelled_trials()
SparkTrials.count_total_trials()
System environment
The system environment in Databricks Runtime 6.0 ML differs from Databricks Runtime 6.0 as follows:
DBUtils: Does not contain Library utility (dbutils.library) (legacy).
Libraries
The following sections list the libraries included in Databricks Runtime 6.0 ML that differ from those included in Databricks Runtime 6.0.
Top-tier libraries
Databricks Runtime 6.0 ML includes the following top-tier libraries:
Python libraries
Databricks Runtime 6.0 ML uses Conda for Python package management and includes many popular ML packages. The following section describes the Conda environment for Databricks Runtime 6.0 ML.
Python 3 on CPU clusters
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=2.0=cpu_0
- _tflow_select=2.3.0=mkl
- absl-py=0.7.1=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.6=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py37_0
- configparser=3.7.4=py37_0
- cryptography=2.6.1=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.5=py37_0
- gitpython=2.1.11=py37_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=h9c2bf20_1
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py37_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- keras=2.2.4=0
- keras-applications=1.0.8=py_0
- keras-base=2.2.4=py37_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.8.0=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=he6710b0_0
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- mock=3.0.5=py37_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py37_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.8.0=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37he6710b0_0
- py-xgboost-cpu=0.90=py37_0
- pyasn1=0.4.6=py_0
- pycparser=2.19=py37_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch-cpu=1.1.0=py3.7_cpu_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py37_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.13.1=py37hf484d3e_0
- tensorflow=1.13.1=mkl_py37h54b294f_0
- tensorflow-base=1.13.1=mkl_py37h7ce6ba3_0
- tensorflow-estimator=1.13.0=py_0
- tensorflow-mkl=1.13.1=h4fcabd2_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision-cpu=0.3.0=py37_cuNone_1
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.9.0
- docker==4.0.2
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.18.1
- hyperopt==0.1.2.db8
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.2.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.8
prefix: /databricks/conda/envs/databricks-ml
R libraries
The R libraries are identical to the R Libraries in Databricks Runtime 6.0.
Java and Scala libraries (Scala 2.11 cluster)
In addition to Java and Scala libraries in Databricks Runtime 6.0, Databricks Runtime 6.0 ML contains the following JARs:
Group ID |
Artifact ID |
Version |
---|---|---|
com.databricks |
spark-deep-learning |
1.5.0-db5-spark2.4 |
com.typesafe.akka |
akka-actor_2.11 |
2.3.11 |
ml.combust.mleap |
mleap-databricks-runtime_2.11 |
0.14.0 |
ml.dmlc |
xgboost4j |
0.90 |
ml.dmlc |
xgboost4j-spark |
0.90 |
org.graphframes |
graphframes_2.11 |
0.7.0-db1-spark2.4 |
org.mlflow |
mlflow-client |
1.2.0 |
org.tensorflow |
libtensorflow |
1.13.1 |
org.tensorflow |
libtensorflow_jni |
1.13.1 |
org.tensorflow |
spark-tensorflow-connector_2.11 |
1.13.1 |
org.tensorflow |
tensorflow |
1.13.1 |
org.tensorframes |
tensorframes |
0.7.0-s_2.11 |