Databricks Runtime 6.2 for ML (EoS)
Note
Support for this Databricks Runtime version has ended. For the end-of-support date, see End-of-support history. For all supported Databricks Runtime versions, see Databricks Runtime release notes versions and compatibility.
Databricks released this version in December 2019.
Databricks Runtime 6.2 for Machine Learning provides a ready-to-go environment for machine learning and data science based on Databricks Runtime 6.2 (EoS). Databricks Runtime ML contains many popular machine learning libraries, including TensorFlow, PyTorch, Keras, and XGBoost. It also supports distributed deep learning training using Horovod.
For more information, including instructions for creating a Databricks Runtime ML cluster, see AI and machine learning on Databricks.
New features
Databricks Runtime 6.2 ML is built on top of Databricks Runtime 6.2. For information on what’s new in Databricks Runtime 6.2, see the Databricks Runtime 6.2 (EoS) release notes.
Improvements
Upgraded machine learning libraries
TensorFlow and TensorBoard: 1.14.0 to 1.15.0. There are two known issues:
You might need to import tensorflow modules explicitly in your function to avoid pickling issues in PySpark, HorovodRunner, HyperOpt, and other machine learning libraries.
The Projector tab in TensorBoard is blank. As a workaround, to visit the projector page directly, you can replace
#projector
in the URL bydata/plugin/projector/projector_binary.html
.
Keras: 2.2.4 to 2.2.5.
Note
If you use the TensorFlow backend for Keras, Databricks recommends using
tf.keras
instead.PyTorch: 1.2.0 to 1.3.0.
tensorboardX: 1.8 to 1.9.
Note
Because PyTorch now officially supports TensorBoard, we will remove tensorboardX in the next major release.
MLflow: 1.3.0 to 1.4.0.
Keras and TensorFlow autologging and Keras model persistence APIs are now compatible with TensorFlow 2.0.
New
get_run
,get_experiment
,get_experiment_by_name
functions
Hyperopt: 0.2-db1 with Databricks MLflow integrations.
mleap-databricks-runtime to 0.15.0 and includes mleap-xgboost-runtime.
Deprecations
In addition to deprecations in Databricks Runtime 6.2, the following packages are deprecated and will be removed in the next major release:
TensorFrames. Use pandas UDF instead.
A few modules and classes in the Python package
sparkdl
. The major ones are:sparkdl.HorovodEstimator
. Use sparkdl.HorovodRunner instead.sparkdl.graph
. Use a pandas UDF instead.sparkdl.udf
. Use a pandas UDF instead.The Transformers and Estimators used in Spark ML pipelines are deprecated. Use the following alternatives:
Use a pandas UDF as a replacement for the following Transformers:
TFImageTransformer
TFTransformer
DeepImagePredictor
DeepImageFeaturizer
KerasImageFileTransformer
KerasTransformer
KerasImageFileEstimator
: For tuning deep learning models, use Hyperopt instead.
For more details and recommended alternatives, look at the deprecation messages when you use these packages in a notebook.
Bug fixes
In Databricks Community Edition, PySpark workers can now find pre-installed Spark Packages.
System environment
The system environment in Databricks Runtime 6.2 ML differs from Databricks Runtime 6.2 as follows:
DBUtils: Does not contain Library utility (dbutils.library) (legacy).
For GPU clusters, the following NVIDIA GPU libraries:
NVIDIA driver 418.40
CUDA 10.0
cuDNN 7.6.4
NCCL 2.4.7
Libraries
The following sections list the libraries included in Databricks Runtime 6.2 ML that differ from those included in Databricks Runtime 6.2.
In this section:
Top-tier libraries
Databricks Runtime 6.2 ML includes the following top-tier libraries:
Python libraries
Databricks Runtime 6.2 ML uses Conda for Python package management and includes many popular ML packages. The following section describes the Conda environment for Databricks Runtime 6.2 ML.
Python on CPU clusters
name: databricks-ml
channels:
- Databricks
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=2.0=cpu_0
- _tflow_select=2.3.0=mkl
- absl-py=0.8.1=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.6.1=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.6=py_0
- gitpython=2.1.11=py37_0
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=h9c2bf20_1
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.9.2=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=he6710b0_1
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- opt_einsum=3.1.0=py_0
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.9.2=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37he6710b0_1
- py-xgboost-cpu=0.90=py37_1
- pyasn1=0.4.8=py_0
- pycparser=2.19=py_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch=1.3.0=py3.7_cpu_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.15.0+db2=pyhb230dea_0
- tensorflow=1.15.0+db2=mkl_py37hc5fbf04_0
- tensorflow-base=1.15.0+db2=mkl_py37h2ae1e84_0
- tensorflow-estimator=1.15.1+db2=pyh2649769_0
- tensorflow-mkl=1.15.0+db2=h4fcabd2_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision=0.4.1=py37_cpu
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.9.1
- deprecated==1.2.7
- docker==4.1.0
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.18.2
- hyperopt==0.2.1.db1
- keras==2.2.5
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.4.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml
Python on GPU clusters
name: databricks-ml-gpu
channels:
- Databricks
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _py-xgboost-mutex=1.0=gpu_0
- _tflow_select=2.1.0=gpu
- absl-py=0.8.1=py37_0
- asn1crypto=0.24.0=py37_0
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.1.7=py37h7b6447c_0
- blas=1.0=mkl
- boto=2.49.0=py37_0
- boto3=1.9.162=py_0
- botocore=1.12.163=py_0
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.1.23=0
- certifi=2019.3.9=py37_0
- cffi=1.12.2=py37h2e261b9_1
- chardet=3.0.4=py37_1003
- click=7.0=py_0
- cloudpickle=0.8.0=py37_0
- colorama=0.4.1=py_0
- configparser=3.7.4=py37_0
- cryptography=2.6.1=py37h1ba5d50_0
- cudatoolkit=10.0.130=0
- cudnn=7.6.4=cuda10.0_0
- cupti=10.0.130=0
- cycler=0.10.0=py37_0
- cython=0.29.6=py37he6710b0_0
- decorator=4.4.0=py37_1
- docutils=0.14=py37_0
- entrypoints=0.3=py37_0
- et_xmlfile=1.0.1=py37_0
- flask=1.0.2=py37_1
- freetype=2.9.1=h8a8886c_1
- future=0.17.1=py37_0
- gast=0.2.2=py37_0
- gitdb2=2.0.6=py_0
- gitpython=2.1.11=py37_0
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- gunicorn=19.9.0=py37_0
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- html5lib=1.0.1=py_0
- icu=58.2=h9c2bf20_1
- idna=2.8=py37_0
- intel-openmp=2019.3=199
- ipython=7.4.0=py37h39e3cac_0
- ipython_genutils=0.2.0=py37_0
- itsdangerous=1.1.0=py_0
- jdcal=1.4=py37_0
- jedi=0.13.3=py37_0
- jinja2=2.10=py37_0
- jmespath=0.9.4=py_0
- jpeg=9b=h024ee3a_2
- keras-applications=1.0.8=py_0
- keras-preprocessing=1.1.0=py_1
- kiwisolver=1.0.1=py37hf484d3e_0
- krb5=1.16.1=h173b8e3_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hd88cf55_4
- libgcc-ng=8.2.0=hdf63c60_1
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.36=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.9.2=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=8.2.0=hdf63c60_1
- libtiff=4.0.10=h2733197_2
- libxgboost=0.90=h688424c_0
- libxml2=2.9.9=hea5a465_1
- libxslt=1.1.33=h7d1a2b0_0
- llvmlite=0.28.0=py37hd408876_0
- lxml=4.3.2=py37hefd8a0e_0
- mako=1.0.10=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h7b6447c_0
- mkl=2019.3=199
- mkl_fft=1.0.10=py37ha843d7b_0
- mkl_random=1.0.2=py37hd81dba3_0
- ncurses=6.1=he6710b0_1
- networkx=2.2=py37_1
- ninja=1.9.0=py37hfd86e86_0
- nose=1.3.7=py37_2
- numba=0.43.1=py37h962f231_0
- numpy=1.16.2=py37h7e9f1db_0
- numpy-base=1.16.2=py37hde5b4d6_0
- olefile=0.46=py_0
- openpyxl=2.6.1=py37_1
- openssl=1.1.1b=h7b6447c_1
- opt_einsum=3.1.0=py_0
- pandas=0.24.2=py37he6710b0_0
- paramiko=2.4.2=py37_0
- parso=0.3.4=py37_0
- pathlib2=2.3.3=py37_0
- patsy=0.5.1=py37_0
- pexpect=4.6.0=py37_0
- pickleshare=0.7.5=py37_0
- pillow=5.4.1=py37h34e0f95_0
- pip=19.0.3=py37_0
- ply=3.11=py37_0
- prompt_toolkit=2.0.9=py37_0
- protobuf=3.9.2=py37he6710b0_0
- psutil=5.6.1=py37h7b6447c_0
- psycopg2=2.7.6.1=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- py-xgboost=0.90=py37h688424c_0
- py-xgboost-gpu=0.90=py37h28bbb66_0
- pyasn1=0.4.8=py_0
- pycparser=2.19=py_0
- pygments=2.3.1=py37_0
- pymongo=3.8.0=py37he6710b0_1
- pynacl=1.3.0=py37h7b6447c_0
- pyopenssl=19.0.0=py37_0
- pyparsing=2.3.1=py37_0
- pysocks=1.6.8=py37_0
- python=3.7.3=h0371630_0
- python-dateutil=2.8.0=py37_0
- python-editor=1.0.4=py_0
- pytorch=1.3.0=py3.7_cuda10.0.130_cudnn7.6.3_0
- pytz=2018.9=py37_0
- pyyaml=5.1=py37h7b6447c_0
- readline=7.0=h7b6447c_5
- requests=2.21.0=py37_0
- s3transfer=0.2.1=py37_0
- scikit-learn=0.20.3=py37hd81dba3_0
- scipy=1.2.1=py37h7c811a0_0
- setuptools=40.8.0=py37_0
- simplejson=3.16.0=py37h14c3975_0
- singledispatch=3.4.0.3=py37_0
- six=1.12.0=py37_0
- smmap2=2.0.5=py_0
- sqlite=3.27.2=h7b6447c_0
- sqlparse=0.3.0=py_0
- statsmodels=0.9.0=py37h035aef0_0
- tabulate=0.8.3=py37_0
- tensorboard=1.15.0+db2=pyhb230dea_0
- tensorflow=1.15.0+db2=gpu_py37h9fd0ff8_0
- tensorflow-base=1.15.0+db2=gpu_py37hd56f5dd_0
- tensorflow-estimator=1.15.1+db2=pyh2649769_0
- tensorflow-gpu=1.15.0+db2=h0d30ee6_0
- termcolor=1.1.0=py37_1
- tk=8.6.8=hbc83047_0
- torchvision=0.4.1=py37_cu100
- tqdm=4.31.1=py37_1
- traitlets=4.3.2=py37_0
- urllib3=1.24.1=py37_0
- virtualenv=16.0.0=py37_0
- wcwidth=0.1.7=py37_0
- webencodings=0.5.1=py37_1
- websocket-client=0.56.0=py37_0
- werkzeug=0.14.1=py37_0
- wheel=0.33.1=py37_0
- wrapt=1.11.1=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- yaml=0.1.7=had09818_2
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- argparse==1.4.0
- databricks-cli==0.9.1
- deprecated==1.2.7
- docker==4.1.0
- fusepy==2.0.4
- gorilla==0.3.0
- horovod==0.18.2
- hyperopt==0.2.1.db1
- keras==2.2.5
- matplotlib==3.0.3
- mleap==0.8.1
- mlflow==1.4.0
- nose-exclude==0.5.0
- pyarrow==0.13.0
- querystring-parser==1.2.4
- seaborn==0.9.0
- tensorboardx==1.9
prefix: /databricks/conda/envs/databricks-ml-gpu
R libraries
The R libraries are identical to the R Libraries in Databricks Runtime 6.2.
Java and Scala libraries (Scala 2.11 cluster)
In addition to Java and Scala libraries in Databricks Runtime 6.2, Databricks Runtime 6.2 ML contains the following JARs:
Group ID |
Artifact ID |
Version |
---|---|---|
com.databricks |
spark-deep-learning |
1.5.0-db12-spark2.4 |
com.typesafe.akka |
akka-actor_2.11 |
2.3.11 |
ml.combust.mleap |
mleap-databricks-runtime_2.11 |
0.15.0 |
ml.dmlc |
xgboost4j |
0.90 |
ml.dmlc |
xgboost4j-spark |
0.90 |
org.graphframes |
graphframes_2.11 |
0.7.0-db1-spark2.4 |
org.mlflow |
mlflow-client |
1.4.0 |
org.tensorflow |
libtensorflow |
1.15.0 |
org.tensorflow |
libtensorflow_jni |
1.15.0 |
org.tensorflow |
spark-tensorflow-connector_2.11 |
1.15.0 |
org.tensorflow |
tensorflow |
1.15.0 |
org.tensorframes |
tensorframes |
0.8.2-s_2.11 |