%md # Mosaic AI Agent Framework: Author and deploy a simple DSPy agent This notebook demonstrates how to author a DSPy agent that's compatible with Mosaic AI Agent Framework features. You learn how to: - Author a DSPy agent with `ChatAgent`. - Manually test the agent's output. - Log and deploy the agent. To learn more about authoring an agent using Mosaic AI Agent Framework, see Databricks documentation ([AWS](https://docs.databricks.com/aws/en/generative-ai/agent-framework/author-agent) | [Azure](https://learn.microsoft.com/azure/databricks/generative-ai/agent-framework/author-agent)). ## Prerequisites - Address all `TODO`s in this notebook. ## Limitations * The agent in this example does not support streaming output.
Mosaic AI Agent Framework: Author and deploy a simple DSPy agent
This notebook demonstrates how to author a DSPy agent that's compatible with Mosaic AI Agent Framework features. You learn how to:
- Author a DSPy agent with
ChatAgent
. - Manually test the agent's output.
- Log and deploy the agent.
To learn more about authoring an agent using Mosaic AI Agent Framework, see Databricks documentation (AWS | Azure).
Prerequisites
- Address all
TODO
s in this notebook.
Limitations
- The agent in this example does not support streaming output.
%pip install -U -qqqq mlflow-skinny[databricks] dspy databricks-agents uv matplotlib aiohttp dbutils.library.restartPython()
%md ## Define the agent in code Define the agent code in a single cell below. Then, you can write the agent code to a local Python file, using the `%%writefile` magic command, for subsequent logging and deployment.
Define the agent in code
Define the agent code in a single cell below. Then, you can write the agent code to a local Python file, using the %%writefile
magic command, for subsequent logging and deployment.
%%writefile agent.py from typing import Any, Generator, Optional import mlflow from databricks.sdk import WorkspaceClient from mlflow.entities import SpanType from mlflow.pyfunc.model import ChatAgent from mlflow.types.agent import ( ChatAgentMessage, ChatAgentResponse, ChatContext, ) import dspy import uuid # Autolog DSPy traces to MLflow mlflow.dspy.autolog() # Set up DSPy with a Databricks-hosted LLM LLM_ENDPOINT_NAME = "databricks-meta-llama-3-3-70b-instruct" lm = dspy.LM(model=f"databricks/{LLM_ENDPOINT_NAME}", max_tokens=250) dspy.settings.configure(lm=lm) class DSPyChatAgent(ChatAgent): def __init__(self): self.agent = dspy.ChainOfThought("question,history -> answer") def prepare_message_history(self, messages: list[ChatAgentMessage]): history_entries = [] # Assume the last message in the input is the most recent user question. for i in range(0, len(messages) - 1, 2): history_entries.append({"question": messages[i].content, "answer": messages[i + 1].content}) return dspy.History(messages=history_entries) @mlflow.trace(span_type=SpanType.AGENT) def predict( self, messages: list[ChatAgentMessage], context: Optional[ChatContext] = None, custom_inputs: Optional[dict[str, Any]] = None, ) -> ChatAgentResponse: latest_question = messages[-1].content response = self.agent(question=latest_question, history=self.prepare_message_history(messages)).answer return ChatAgentResponse( messages=[ChatAgentMessage(role="assistant", content=response, id=uuid.uuid4().hex)] ) # Set model for logging or interactive testing from mlflow.models import set_model AGENT = DSPyChatAgent() set_model(AGENT)
%md ## Test the agent Interact with the agent to test its output. Since you manually traced methods within `ChatAgent`, you can view the trace for each step the agent takes, with any LLM calls made via DSPy APIs automatically traced by autologging. Replace this placeholder input with an appropriate domain-specific example for your agent.
Test the agent
Interact with the agent to test its output.
Since you manually traced methods within ChatAgent
, you can view the trace for each step the agent takes, with any LLM calls made via DSPy APIs automatically traced by autologging.
Replace this placeholder input with an appropriate domain-specific example for your agent.
dbutils.library.restartPython()
from agent import AGENT AGENT.predict({"messages": [{"role": "user", "content": "What is 5+5?"}, {"role": "assistant", "content": "5+5=10"}, {"role":"user", "content": "What is the square root of that?"}]})
%md ### Log the `agent` as an MLflow model Log the agent as code from the `agent.py` file. See [MLflow - Models from Code](https://mlflow.org/docs/latest/models.html#models-from-code).
Log the agent
as an MLflow model
Log the agent as code from the agent.py
file. See MLflow - Models from Code.
import mlflow from agent import LLM_ENDPOINT_NAME from mlflow.models.resources import DatabricksServingEndpoint from pkg_resources import get_distribution with mlflow.start_run(): logged_agent_info = mlflow.pyfunc.log_model( name="agent", python_model="agent.py", pip_requirements=[ f"mlflow=={get_distribution('mlflow').version}", f"dspy=={get_distribution('dspy').version}", f"databricks-sdk=={get_distribution('databricks-sdk').version}", ], resources=[DatabricksServingEndpoint(endpoint_name=LLM_ENDPOINT_NAME)], )
%md ## Pre-deployment agent validation Before registering and deploying the agent, perform pre-deployment checks using the [mlflow.models.predict()](https://mlflow.org/docs/latest/python_api/mlflow.models.html#mlflow.models.predict) API. See Databricks documentation ([AWS](https://docs.databricks.com/aws/en/machine-learning/model-serving/model-serving-debug#validate-inputs) | [Azure](https://learn.microsoft.com/en-us/azure/databricks/machine-learning/model-serving/model-serving-debug#before-model-deployment-validation-checks)).
Pre-deployment agent validation
Before registering and deploying the agent, perform pre-deployment checks using the mlflow.models.predict() API. See Databricks documentation (AWS | Azure).
mlflow.models.predict( model_uri=f"runs:/{logged_agent_info.run_id}/agent", input_data={"messages": [{"role": "user", "content": "Hello!"}]}, env_manager="uv", )
%md ## Register the model to Unity Catalog Before you deploy the agent, you must register the agent to Unity Catalog. - **TODO** Update the `catalog`, `schema`, and `model_name` below to register the MLflow model to Unity Catalog.
Register the model to Unity Catalog
Before you deploy the agent, you must register the agent to Unity Catalog.
- TODO Update the
catalog
,schema
, andmodel_name
below to register the MLflow model to Unity Catalog.
mlflow.set_registry_uri("databricks-uc") # TODO: define the catalog, schema, and model name for your UC model. catalog = "" schema = "" model_name = "" UC_MODEL_NAME = f"{catalog}.{schema}.{model_name}" # register the model to UC uc_registered_model_info = mlflow.register_model(model_uri=logged_agent_info.model_uri, name=UC_MODEL_NAME)
%md ## Deploy the agent
Deploy the agent
from databricks import agents agents.deploy(UC_MODEL_NAME, uc_registered_model_info.version, tags={"endpointSource": "docs"})
%md ## Next steps After your agent is deployed, you can chat with it in AI playground to perform additional checks, share it with SMEs in your organization for feedback, or embed it in a production application. See Databricks documentation ([AWS](https://docs.databricks.com/aws/en/generative-ai/agent-framework/deploy-agent) | [Azure](https://learn.microsoft.com/en-us/azure/databricks/generative-ai/deploy-agent)).