MLflow Tracing 統合
MLflow Tracing は、さまざまな一般的な生成AI ライブラリやフレームワークと統合されており、それらすべてに対して 1 行の自動トレース エクスペリエンスを提供します。 これにより、最小限のセットアップで生成AIアプリケーションの可観測性を即座に得ることができます。
自動トレースは、特定のライブラリまたは SDK の実装に基づいて、アプリケーションのロジックと中間ステップ (LLM 呼び出し、ツールの使用、エージェントの対話など) をキャプチャします。
自動トレースの仕組み、前提条件、および手動トレースとの組み合わせ例については、メインの自動 トレース ガイドを参照してください。以下の簡単な例は、いくつかの主要な統合を示しています。サポートされている各ライブラリの詳細なガイドは、前提条件、高度な例、および特定の動作をカバーしており、このセクションのそれぞれのページで入手できます。
トップの統合の概要
ここでは、最も一般的に使用される統合のクイックスタートの例を示します。タブをクリックすると、基本的な使用例が表示されます。それぞれの詳細な前提条件とより高度なシナリオについては、専用の統合ページ (以下のタブまたは一覧からリンクされています) を参照してください。
- OpenAI
- LangChain
- LangGraph
- Anthropic
- DSPy
- Databricks
- Bedrock
- AutoGen
import mlflow
import openai
# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# import os
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"
# Enable auto-tracing for OpenAI
mlflow.openai.autolog()
# Set up MLflow tracking
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/openai-tracing-demo")
openai_client = openai.OpenAI()
messages = [
{
"role": "user",
"content": "What is the capital of France?",
}
]
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=messages,
temperature=0.1,
max_tokens=100,
)
# View trace in MLflow UI
import mlflow
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# import os
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"
mlflow.langchain.autolog()
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/langchain-tracing-demo")
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.7, max_tokens=1000)
prompt = PromptTemplate.from_template("Tell me a joke about {topic}.")
chain = prompt | llm | StrOutputParser()
chain.invoke({"topic": "artificial intelligence"})
# View trace in MLflow UI
import mlflow
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_react_agent
# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# import os
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"
mlflow.langchain.autolog() # LangGraph uses LangChain's autolog
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/langgraph-tracing-demo")
@tool
def get_weather(city: str):
"""Use this to get weather information."""
return f"It might be cloudy in {city}"
llm = ChatOpenAI(model="gpt-4o-mini")
graph = create_react_agent(llm, [get_weather])
result = graph.invoke({"messages": [("user", "what is the weather in sf?")]})
# View trace in MLflow UI
import mlflow
import anthropic
import os
# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"
mlflow.anthropic.autolog()
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/anthropic-tracing-demo")
client = anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY"))
message = client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1024,
messages=[{"role": "user", "content": "Hello, Claude"}],
)
# View trace in MLflow UI
import mlflow
import dspy
# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# import os
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"
mlflow.dspy.autolog()
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/dspy-tracing-demo")
lm = dspy.LM("openai/gpt-4o-mini") # Assumes OPENAI_API_KEY is set
dspy.configure(lm=lm)
class SimpleSignature(dspy.Signature):
input_text: str = dspy.InputField()
output_text: str = dspy.OutputField()
program = dspy.Predict(SimpleSignature)
result = program(input_text="Summarize MLflow Tracing.")
# View trace in MLflow UI
import mlflow
import os
from openai import OpenAI # Databricks FMAPI uses OpenAI client
# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"
mlflow.openai.autolog() # Traces Databricks FMAPI via OpenAI client
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/databricks-fmapi-tracing")
client = OpenAI(
api_key=os.environ.get("DATABRICKS_TOKEN"),
base_url=f"{os.environ.get('DATABRICKS_HOST')}/serving-endpoints"
)
response = client.chat.completions.create(
model="databricks-llama-4-maverick",
messages=[{"role": "user", "content": "Key features of MLflow?"}],
)
# View trace in MLflow UI
import mlflow
import boto3
# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# import os
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"
mlflow.bedrock.autolog()
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/bedrock-tracing-demo")
bedrock = boto3.client(
service_name="bedrock-runtime",
region_name="us-east-1" # Replace with your region
)
response = bedrock.converse(
modelId="anthropic.claude-3-5-sonnet-20241022-v2:0",
messages=[{"role": "user", "content": "Hello World in one line."}]
)
# View trace in MLflow UI
import mlflow
from autogen import ConversableAgent
import os
# If running this code outside of a Databricks notebook (e.g., locally),
# uncomment and set the following environment variables to point to your Databricks workspace:
# os.environ["DATABRICKS_HOST"] = "https://your-workspace.cloud.databricks.com"
# os.environ["DATABRICKS_TOKEN"] = "your-personal-access-token"
mlflow.autogen.autolog()
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/autogen-tracing-demo")
config_list = [{"model": "gpt-4o-mini", "api_key": os.environ.get("OPENAI_API_KEY")}]
assistant = ConversableAgent("assistant", llm_config={"config_list": config_list})
user_proxy = ConversableAgent("user_proxy", human_input_mode="NEVER", code_execution_config=False)
user_proxy.initiate_chat(assistant, message="What is 2+2?")
# View trace in MLflow UI
複数の自動トレース統合の有効化
生成AIアプリケーションは複数のライブラリを組み合わせることが多いため、 MLflow Tracing では複数の統合に対して同時に自動トレースを有効にし、統一されたトレースエクスペリエンスを提供できます。
たとえば、LangChain と直接 OpenAI トレースの両方を有効にするには、次のようにします。
import mlflow
# Enable MLflow Tracing for both LangChain and OpenAI
mlflow.langchain.autolog()
mlflow.openai.autolog()
# Your code using both LangChain and OpenAI directly...
# ... an example can be found on the Automatic Tracing page ...
MLflow は、LangChain と直接 OpenAI LLM 呼び出しの両方のステップを組み合わせた 1 つのまとまりのあるトレースを生成するため、フロー全体を検査できます。統合の組み合わせのその他の例については、 自動トレース のページを参照してください。
自動トレースの無効化
特定のライブラリの自動トレースを無効にするには、 mlflow.<library>.autolog(disable=True)
.すべての自動ログ統合を一度に無効にするには、 mlflow.autolog(disable=True)
を使用します。
import mlflow
# Disable for a specific library
mlflow.openai.autolog(disable=True)
# Disable all autologging
mlflow.autolog(disable=True)