Pular para o conteúdo principal

Consulte modelos básicos

Neste artigo, o senhor aprenderá a formatar solicitações de consulta para modelos de fundação e enviá-las para o seu modelo de serviço endpoint. O senhor pode consultar modelos de fundação hospedados pela Databricks e modelos de fundação hospedados fora da Databricks.

Para solicitações de consulta de modelos tradicionais ML ou Python, consulte Ponto de extremidade de serviço de consulta para modelos personalizados.

O Mosaic AI Model Serving é compatível com APIs de modelos de fundação e modelos externos para acessar modelos de fundação. A servindo modelo usa um site unificado compatível com OpenAI API e SDK para consultá-los. Isso possibilita experimentar e personalizar modelos básicos para produção em nuvens e fornecedores compatíveis.

Mosaic AI Model Serving fornece as seguintes opções para o envio de solicitações de pontuação ao endpoint que atende a modelos da fundação ou modelos externos:

Método

Detalhes

Cliente OpenAI

Consultar um modelo hospedado por um Mosaic AI Model Serving endpoint usando o cliente OpenAI. Especifique o nome do modelo de serviço endpoint como a entrada model. Suportado para modelos de bate-papo, incorporações e conclusões disponibilizados pelas APIs do Foundation Model ou por modelos externos.

Função SQL

Invoque a inferência do modelo diretamente do SQL usando a função ai_query SQL. Veja o exemplo: consulte um modelo de base.

UI de serviço

Selecione Query endpoint (Ponto de extremidade de consulta ) na página Serving endpoint (Ponto de extremidade de atendimento ). Insira os dados de entrada do modelo no formato JSON e clique em Send Request (Enviar solicitação ). Se o modelo tiver um registro de exemplo de entrada, use Show Example para carregá-lo.

API REST

Chamar e consultar o modelo usando a API REST. Consulte POST /serving-endpoint/{name}/invocations para obter detalhes. Para solicitações de pontuação para o endpoint que atende a vários modelos, consulte Consultar modelos individuais em endpoint.

SDK de implantações do MLflow

Use a função predict() do MLflow Deployments SDK para consultar o modelo.

SDK Python da Databricks

O Databricks Python SDK é uma camada sobre a API REST. Ele lida com detalhes de baixo nível, como autenticação, facilitando a interação com os modelos.

Requisitos

important

Como prática recomendada de segurança para cenários de produção, a Databricks recomenda que o senhor use tokens OAuth máquina a máquina para autenticação durante a produção.

Para testes e desenvolvimento, o site Databricks recomenda o uso de tokens de acesso pessoal pertencentes à entidade de serviço em vez de usuários do site workspace. Para criar tokens o site para uma entidade de serviço, consulte gerenciar tokens para uma entidade de serviço.

Instalar o pacote

Depois de selecionar um método de consulta, o senhor deve primeiro instalar o pacote apropriado para o seu clustering.

To use the OpenAI client, the databricks-sdk[openai] package needs to be installed on your cluster. Databricks SDK provides a wrapper for constructing the OpenAI client with authorization automatically configured to query generative AI models. Run the following in your notebook or your local terminal:

!pip install databricks-sdk[openai]>=0.35.0

The following is only required when installing the package on a Databricks Notebook

Python
dbutils.library.restartPython()

Consulte um modelo de conclusão de bate-papo

Veja a seguir exemplos de como consultar um modelo de bate-papo. O exemplo se aplica à consulta de um modelo de bate-papo disponibilizado usando qualquer um dos recursos de modelo de serviço: Foundation Model APIs ou External models.

Para obter um exemplo de inferência de lotes, consulte Realizar inferência de lotes LLM usando AI Functions.

The following is a chat request for the DBRX Instruct model made available by the Foundation Model APIs pay-per-token endpoint, databricks-dbrx-instruct in your workspace.

To use the OpenAI client, specify the model serving endpoint name as the model input.

Python

from databricks.sdk import WorkspaceClient

w = WorkspaceClient()
openai_client = w.serving_endpoints.get_open_ai_client()

response = openai_client.chat.completions.create(
model="databricks-dbrx-instruct",
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is a mixture of experts model?",
}
],
max_tokens=256
)

To query foundation models outside of your workspace, you must use the OpenAI client directly. You also need your Databricks workspace instance to connect the OpenAI client to Databricks. The following example assumes you have a Databricks API token and openai installed on your compute.

Python

import os
import openai
from openai import OpenAI

client = OpenAI(
api_key="dapi-your-databricks-token",
base_url="https://example.staging.cloud.databricks.com/serving-endpoints"
)

response = client.chat.completions.create(
model="databricks-dbrx-instruct",
messages=[
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is a mixture of experts model?",
}
],
max_tokens=256
)

Como exemplo, o formato de solicitação esperado para um modelo de chat ao usar a API REST é o seguinte. Para modelos externos, o senhor pode incluir parâmetros adicionais que são válidos para um determinado provedor e configuração de endpoint. Consulte Parâmetros de consulta adicionais.

Bash
{
"messages": [
{
"role": "user",
"content": "What is a mixture of experts model?"
}
],
"max_tokens": 100,
"temperature": 0.1
}

O formato de resposta esperado para uma solicitação feita usando a API REST é o seguinte:

JSON
{
"model": "databricks-dbrx-instruct",
"choices": [
{
"message": {},
"index": 0,
"finish_reason": null
}
],
"usage": {
"prompt_tokens": 7,
"completion_tokens": 74,
"total_tokens": 81
},
"object": "chat.completion",
"id": null,
"created": 1698824353
}

Consulte um modelo de incorporação

A seguir, uma solicitação de incorporação para o modelo gte-large-en disponibilizado pelas APIs do Foundation Model. O exemplo se aplica à consulta de um modelo de incorporação disponibilizado usando um dos recursos de modelo de serviço: Foundation Model APIs ou modelos externos.

To use the OpenAI client, specify the model serving endpoint name as the model input.

Python

from databricks.sdk import WorkspaceClient

w = WorkspaceClient()
openai_client = w.serving_endpoints.get_open_ai_client()

response = openai_client.embeddings.create(
model="databricks-gte-large-en",
input="what is databricks"
)

To query foundation models outside your workspace, you must use the OpenAI client directly, as demonstrated below. The following example assumes you have a Databricks API token and openai installed on your compute. You also need your Databricks workspace instance to connect the OpenAI client to Databricks.

Python

import os
import openai
from openai import OpenAI

client = OpenAI(
api_key="dapi-your-databricks-token",
base_url="https://example.staging.cloud.databricks.com/serving-endpoints"
)

response = client.embeddings.create(
model="databricks-gte-large-en",
input="what is databricks"
)

A seguir está o formato de solicitação esperado para um modelo de incorporação. Para modelos externos, o senhor pode incluir parâmetros adicionais que são válidos para um determinado provedor e configuração de endpoint. Consulte Parâmetros de consulta adicionais.

Bash

{
"input": [
"embedding text"
]
}

Veja a seguir o formato de resposta esperado:

JSON
{
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": []
}
],
"model": "text-embedding-ada-002-v2",
"usage": {
"prompt_tokens": 2,
"total_tokens": 2
}
}

Verifique se as incorporações estão normalizadas

Use o seguinte para verificar se as incorporações geradas pelo seu modelo estão normalizadas.

Python

import numpy as np

def is_normalized(vector: list[float], tol=1e-3) -> bool:
magnitude = np.linalg.norm(vector)
return abs(magnitude - 1) < tol

Consulte um modelo de preenchimento de texto

important

Querying text completion models made available using Foundation Model APIs pay-per-token using the OpenAI client is not supported. Only querying external models using the OpenAI client is supported as demonstrated in this section.

To use the OpenAI client, specify the model serving endpoint name as the model input. The following example queries the claude-2 completions model hosted by Anthropic using the OpenAI client. To use the OpenAI client, populate the model field with the name of the model serving endpoint that hosts the model you want to query.

This example uses a previously created endpoint, anthropic-completions-endpoint, configured for accessing external models from the Anthropic model provider. See how to create external model endpoints.

See Supported models for additional models you can query and their providers.

Python

from databricks.sdk import WorkspaceClient

w = WorkspaceClient()
openai_client = w.serving_endpoints.get_open_ai_client()

completion = openai_client.completions.create(
model="anthropic-completions-endpoint",
prompt="what is databricks",
temperature=1.0
)
print(completion)

A seguir está o formato de solicitação esperado para um modelo de conclusão. Para modelos externos, o senhor pode incluir parâmetros adicionais que são válidos para um determinado provedor e configuração de endpoint. Consulte Parâmetros de consulta adicionais.

Bash
{
"prompt": "What is mlflow?",
"max_tokens": 100,
"temperature": 0.1,
"stop": [
"Human:"
],
"n": 1,
"stream": false,
"extra_params":
{
"top_p": 0.9
}
}

Veja a seguir o formato de resposta esperado:

JSON
{
"id": "cmpl-8FwDGc22M13XMnRuessZ15dG622BH",
"object": "text_completion",
"created": 1698809382,
"model": "gpt-3.5-turbo-instruct",
"choices": [
{
"text": "MLflow is an open-source platform for managing the end-to-end machine learning lifecycle. It provides tools for tracking experiments, managing and deploying models, and collaborating on projects. MLflow also supports various machine learning frameworks and languages, making it easier to work with different tools and environments. It is designed to help data scientists and machine learning engineers streamline their workflows and improve the reproducibility and scalability of their models.",
"index": 0,
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 5,
"completion_tokens": 83,
"total_tokens": 88
}
}

Converse com LLMs apoiados usando o AI Playground

O senhor pode interagir com grandes modelos de linguagem suportados usando o AI Playground. O AI Playground é um ambiente semelhante a um bate-papo em que o senhor pode testar, solicitar e comparar LLMs do seu Databricks workspace.

Playground de IA

Recurso adicional