Automatic Tracing
Add one line of code, mlflow.<library>.autolog()
to automatically trace your generative AI app. Automatic tracing works with 20+ supported libraries and frameworks out of the box.
Prerequisites
Databricks recommends MLflow 3 for the latest GenAI tracing capabilites.
Run the following in a Databricks notebook to install the mlflow
package and integration package you want to use. This example uses OpenAI:
- MLflow 3
- MLflow 2.x
- mlflow[databricks]>=3.1: Core MLflow functionality with GenAI features and Databricks connectivity.
- openai>=1.0.0: Only required to run the Basic Automatic Tracing Example on this page (if using other LLM providers, install their respective SDKs instead).
- Additional libraries: Install specific libraries for the integrations you want to use.
Install the basic requirements:
%pip install --upgrade "mlflow[databricks]>=3.1" openai>=1.0.0
# Also install libraries you want to trace (langchain, anthropic, etc.)
dbutils.library.restartPython()
- mlflow[databricks]>=2.15.0,<3.0.0: Core MLflow functionality with Databricks connectivity.
- openai>=1.0.0: Only required to run the Basic Automatic Tracing Example on this page (if using other LLM providers, install their respective SDKs instead).
- Additional libraries: Install specific libraries for the integrations you want to use.
Install the basic requirements:
%pip install --upgrade "mlflow[databricks]>=2.15.0,<3.0.0" openai>=1.0.0
# Also install libraries you want to trace (langchain, anthropic, etc.)
dbutils.library.restartPython()
Configure credentials
- Databricks notebook
- External environment
In a Databricks notebook, set any necessary LLM API keys:
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
# Add other provider keys as needed
# os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
# os.environ["MISTRAL_API_KEY"] = "your-api-key"
If you are in a external enviroment, set Databricks credentials and LLM API keys:
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_TOKEN="your-databricks-token"
# Add other provider keys as needed
#export OPENAI_API_KEY="your-openai-api-key"
# export ANTHROPIC_API_KEY="your-anthropic-api-key"
# export MISTRAL_API_KEY="your-mistral-api-key"
Automatic tracing example
Here's how to enable automatic tracing for OpenAI agents connecting to Databricks Foundation Model APIs.
import mlflow
import os
from openai import OpenAI
# Databricks Foundation Model APIs use Databricks authentication.
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/databricks-sdk-autolog-example")
# Enable auto-tracing for OpenAI (which will trace Databricks Foundation Model API calls)
mlflow.openai.autolog()
# Create OpenAI client configured for Databricks
client = OpenAI(
api_key=os.environ.get("DATABRICKS_TOKEN"),
base_url=f"{os.environ.get('DATABRICKS_HOST')}/serving-endpoints"
)
# Query Llama 4 Maverick using OpenAI client
response = client.chat.completions.create(
model="databricks-llama-4-maverick",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What are the key features of MLflow Tracing?"}
],
max_tokens=150,
temperature=0.7
)
print(response.choices[0].message.content)
# Your calls to Databricks Foundation Model APIs are automatically traced!
Full Databricks Integration Guide
Other popular integrations
MLflow automatically traces 20+ supported frameworks. Here are the most popular ones:
- OpenAI
- LangChain
- LangGraph
- Anthropic
- DSPy
- Bedrock
- AutoGen
Here's how to enable automatic tracing for OpenAI:
import mlflow
from openai import OpenAI
# Enable automatic tracing
mlflow.openai.autolog()
# Set up tracking
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/tracing-demo")
# Use OpenAI as normal - traces happen automatically
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "What is MLflow Tracing?"}],
max_tokens=100
)
print(response.choices[0].message.content)
# All OpenAI calls are now traced.
See the Full OpenAI integration guide.
import mlflow
import os
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
# Enabling autolog for LangChain will enable trace logging.
mlflow.langchain.autolog()
# Set up MLflow tracking on Databricks
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/langchain-tracing-demo")
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.7, max_tokens=1000)
prompt_template = PromptTemplate.from_template(
"Answer the question as if you are {person}, fully embodying their style, wit, personality, and habits of speech. "
"Emulate their quirks and mannerisms to the best of your ability, embracing their traits—even if they aren't entirely "
"constructive or inoffensive. The question is: {question}"
)
chain = prompt_template | llm | StrOutputParser()
# Let's test another call
chain.invoke(
{
"person": "Linus Torvalds",
"question": "Can I just set everyone's access to sudo to make things easier?",
}
)
from typing import Literal
import mlflow
from langchain_core.messages import AIMessage, ToolCall
from langchain_core.outputs import ChatGeneration, ChatResult
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_react_agent
# Enabling tracing for LangGraph (LangChain)
mlflow.langchain.autolog()
# Set up MLflow tracking on Databricks
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/langgraph-tracing-demo")
@tool
def get_weather(city: Literal["nyc", "sf"]):
"""Use this to get weather information."""
if city == "nyc":
return "It might be cloudy in nyc"
elif city == "sf":
return "It's always sunny in sf"
llm = ChatOpenAI(model="gpt-4o-mini")
tools = [get_weather]
graph = create_react_agent(llm, tools)
# Invoke the graph
result = graph.invoke(
{"messages": [{"role": "user", "content": "what is the weather in sf?"}]}
)
import anthropic
import mlflow
import os
# Enable auto-tracing for Anthropic
mlflow.anthropic.autolog()
# Set up MLflow tracking on Databricks
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/anthropic-tracing-demo")
# Configure your API key.
client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
# Use the create method to create new message.
message = client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1024,
messages=[
{"role": "user", "content": "Hello, Claude"},
],
)
import dspy
import mlflow
# Enabling tracing for DSPy
mlflow.dspy.autolog()
# Set up MLflow tracking on Databricks
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/dspy-tracing-demo")
# Define a simple ChainOfThought model and run it
lm = dspy.LM("openai/gpt-4o-mini")
dspy.configure(lm=lm)
# Define a simple summarizer model and run it
class SummarizeSignature(dspy.Signature):
"""Given a passage, generate a summary."""
passage: str = dspy.InputField(desc="a passage to summarize")
summary: str = dspy.OutputField(desc="a one-line summary of the passage")
class Summarize(dspy.Module):
def __init__(self):
self.summarize = dspy.ChainOfThought(SummarizeSignature)
def forward(self, passage: str):
return self.summarize(passage=passage)
summarizer = Summarize()
summarizer(
passage=(
"MLflow Tracing is a feature that enhances LLM observability in your Generative AI (GenAI) applications "
"by capturing detailed information about the execution of your application's services. Tracing provides "
"a way to record the inputs, outputs, and metadata associated with each intermediate step of a request, "
"enabling you to easily pinpoint the source of bugs and unexpected behaviors."
)
)
import boto3
import mlflow
# Enable auto-tracing for Amazon Bedrock
mlflow.bedrock.autolog()
# Set up MLflow tracking on Databricks
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/bedrock-tracing-demo")
# Create a boto3 client for invoking the Bedrock API
bedrock = boto3.client(
service_name="bedrock-runtime",
region_name="<REPLACE_WITH_YOUR_AWS_REGION>",
)
# MLflow will log a trace for Bedrock API call
response = bedrock.converse(
modelId="anthropic.claude-3-5-sonnet-20241022-v2:0",
messages=[
{
"role": "user",
"content": "Describe the purpose of a 'hello world' program in one line.",
}
],
inferenceConfig={
"maxTokens": 512,
"temperature": 0.1,
"topP": 0.9,
},
)
import os
from typing import Annotated, Literal
from autogen import ConversableAgent
import mlflow
# Turn on auto tracing for AutoGen
mlflow.autogen.autolog()
# Set up MLflow tracking on Databricks
mlflow.set_tracking_uri("databricks")
mlflow.set_experiment("/Shared/autogen-tracing-demo")
# Define a simple multi-agent workflow using AutoGen
config_list = [
{
"model": "gpt-4o-mini",
# Please set your OpenAI API Key to the OPENAI_API_KEY env var before running this example
"api_key": os.environ.get("OPENAI_API_KEY"),
}
]
Operator = Literal["+", "-", "*", "/"]
def calculator(a: int, b: int, operator: Annotated[Operator, "operator"]) -> int:
if operator == "+":
return a + b
elif operator == "-":
return a - b
elif operator == "*":
return a * b
elif operator == "/":
return int(a / b)
else:
raise ValueError("Invalid operator")
# First define the assistant agent that suggests tool calls.
assistant = ConversableAgent(
name="Assistant",
system_message="You are a helpful AI assistant. "
"You can help with simple calculations. "
"Return 'TERMINATE' when the task is done.",
llm_config={"config_list": config_list},
)
# The user proxy agent is used for interacting with the assistant agent
# and executes tool calls.
user_proxy = ConversableAgent(
name="Tool Agent",
llm_config=False,
is_termination_msg=lambda msg: msg.get("content") is not None
and "TERMINATE" in msg["content"],
human_input_mode="NEVER",
)
# Register the tool signature with the assistant agent.
assistant.register_for_llm(name="calculator", description="A simple calculator")(
calculator
)
user_proxy.register_for_execution(name="calculator")(calculator)
response = user_proxy.initiate_chat(
assistant, message="What is (44231 + 13312 / (230 - 20)) * 4?"
)
Auto-trace multiple frameworks
You can use auto-tracing for multiple frameworks in the same agent.
The following code combines direct OpenAI API calls, LangChain chains, and custom logic in a single trace for easy debugging and monitoring.
%pip install --upgrade langchain langchain-openai
import mlflow
import openai
from mlflow.entities import SpanType
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
# Enable auto-tracing for both OpenAI and LangChain
mlflow.openai.autolog()
mlflow.langchain.autolog()
@mlflow.trace(span_type=SpanType.CHAIN)
def multi_provider_workflow(query: str):
# First, use OpenAI directly for initial processing
analysis = openai.OpenAI().chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "Analyze the query and extract key topics."},
{"role": "user", "content": query}
]
)
topics = analysis.choices[0].message.content
# Then use LangChain for structured processing
llm = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template(
"Based on these topics: {topics}\nGenerate a detailed response to: {query}"
)
chain = prompt | llm
response = chain.invoke({"topics": topics, "query": query})
return response
# Run the function
result = multi_provider_workflow("Explain quantum computing")
Combine manual and automatic tracing
Use @mlflow.trace
with auto-tracing to create unified traces for the following scenarios:
- Multiple LLM calls in one workflow
- Multi-agent systems with different providers
- Custom logic between LLM calls
import mlflow
import openai
from mlflow.entities import SpanType
mlflow.openai.autolog()
@mlflow.trace(span_type=SpanType.CHAIN)
def run(question):
messages = build_messages(question)
# MLflow automatically generates a span for OpenAI invocation
response = openai.OpenAI().chat.completions.create(
model="gpt-4o-mini",
max_tokens=100,
messages=messages,
)
return parse_response(response)
@mlflow.trace
def build_messages(question):
return [
{"role": "system", "content": "You are a helpful chatbot."},
{"role": "user", "content": question},
]
@mlflow.trace
def parse_response(response):
return response.choices[0].message.content
run("What is MLflow?")
Running this code generates a single trace that combines the manual spans with the automatic OpenAI tracing:
Advanced example: multiple LLM calls
import mlflow
import openai
from mlflow.entities import SpanType
# Enable auto-tracing for OpenAI
mlflow.openai.autolog()
@mlflow.trace(span_type=SpanType.CHAIN)
def process_user_query(query: str):
# First LLM call: Analyze the query
analysis = openai.OpenAI().chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "Analyze the user's query and determine if it requires factual information or creative writing."},
{"role": "user", "content": query}
]
)
analysis_result = analysis.choices[0].message.content
# Second LLM call: Generate response based on analysis
if "factual" in analysis_result.lower():
# Use a different model for factual queries
response = openai.OpenAI().chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "Provide a factual, well-researched response."},
{"role": "user", "content": query}
]
)
else:
# Use a different model for creative queries
response = openai.OpenAI().chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "Provide a creative, engaging response."},
{"role": "user", "content": query}
]
)
return response.choices[0].message.content
# Run the function
result = process_user_query("Tell me about the history of artificial intelligence")
This creates one trace with:
- Parent span for
process_user_query
- Two child spans for the OpenAI calls
Next steps
See the following pages:
- Manual tracing with decorators - Add custom spans to capture business logic alongside auto-traced LLM calls
- Debug and observe your app - Use the Trace UI to analyze your application's behavior and performance
- Evaluate app quality - Leverage your traces to systematically assess and improve application quality
Reference guides
For detailed documentation for concepts and features mentioned in this guide, see the following:
- All integrations - Browse all 20+ supported libraries and frameworks
- Tracing concepts - Understand the fundamentals of MLflow Tracing
- Tracing data model - Learn about traces, spans, and attributes