Databricks Runtime 8,0 para (EoS) ML
O suporte para essa versão do Databricks Runtime foi encerrado. Para saber a data do fim do suporte, consulte Histórico do fim do suporte. Para conhecer todas as versões compatíveis do site Databricks Runtime, consulte Databricks Runtime notas sobre as versões e a compatibilidade.
A Databricks lançou essa versão em março de 2021.
O Databricks Runtime 8.0 for Machine Learning oferece um ambiente pronto para uso para aprendizado de máquina e ciência de dados com base no Databricks Runtime 8.0 (EoS). Databricks Runtime ML Contém muitas bibliotecas populares de aprendizado de máquina, incluindo TensorFlow, PyTorch, e XGBoost. Ele também oferece suporte ao treinamento de aprendizagem profunda distribuída usando o Horovod.
Para obter mais informações, incluindo instruções para criar um cluster Databricks Runtime ML , consulte AI e aprendizado de máquina em Databricks.
Novo recurso e grandes mudanças
O Databricks Runtime 8.0 ML foi desenvolvido com base no Databricks Runtime 8.0. Para obter informações sobre as novidades do Databricks Runtime 8.0, incluindo Apache Spark MLlib e SparkR, consulte as notas sobre a versão Databricks Runtime 8.0 (EoS).
Configuração do canal Conda
Em setembro de 2020, a Anaconda Inc. atualizou seus termos de serviço para o canal anaconda.org. Com base nos novos termos de serviço, o senhor pode precisar de uma licença comercial se depender do empacotamento e da distribuição do Anaconda. Visite as Perguntas frequentes do Anaconda Commercial Edition para obter mais informações. Como resultado dessa alteração, removemos a configuração do canal default para o gerenciador de pacotes Conda em Databricks Runtime ML 8.0. Para instalar ou atualizar o pacote usando o comando %conda
, o senhor deve especificar um canal. Seu uso de qualquer canal do Anaconda é regido pelos termos de serviço.
Principais mudanças no ambiente do Databricks Runtime ML Python
Consulte Databricks Runtime 8.0 (EoS) para conhecer as principais alterações no ambiente Python do Databricks Runtime. Para obter uma lista completa do pacote Python instalado e suas versões, consulte Python biblioteca.
Grandes mudanças no meio ambiente
- O canal padrão Conda foi removido.
- A versão do sistema default Python foi atualizada de 3.7.6 para 3.8.5.
- O TensorFlow 1.x não é mais compatível.
Python pacote atualizado
- TensorBoard 2.3.1 -> 2.4.1
- tensorflow 2.3.1 - > 2.4.0
- matplotlib 3.1.3 - > 3,2.2
- joblib 0.14.1 - > 0.17.0
- petastorm 0.9.7 - > 0.9.8
- cloudpickle 1.4.1 - > 1.6.0
- nltk 3.4.5 - > 3.5
- O pacote na distribuição do Anaconda foi atualizado de 2020.02 para 2020.11
Python pacote adicionado
- forma: 0.37.0
Python pacote removido
- gorila
- portas traseiras
Ambiente do sistema
O ambiente do sistema no Databricks Runtime 8.0 ML difere do Databricks Runtime 8.0 da seguinte forma:
- DBUtils : Databricks Runtime ML não inclui utilidades de biblioteca (dbutils.biblioteca) (legado). Em vez disso, use
%pip
e%conda
comando. NotebookConsulte -scoped Pythonbiblioteca.
biblioteca
As seções a seguir listam as bibliotecas incluídas no Databricks Runtime 8.0 ML que diferem daquelas incluídas no Databricks Runtime 8.0.
Nesta secção:
- Biblioteca de primeira linha
- Bibliotecas Python
- R biblioteca
- Java e Scala biblioteca (Scala 2.12 clustering)
Biblioteca de primeira linha
Databricks Runtime 8.0 ML inclui as seguintes bibliotecas de primeira linha:
- GraphFrames
- Horovod e HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Python biblioteca
Databricks Runtime 8.0 ML usa Conda para o gerenciamento de pacotes Python e inclui muitos pacotes populares ML.
Além do pacote especificado nos ambientes Conda nas seções a seguir, o Databricks Runtime 8.0 ML também inclui o seguinte pacote:
- Hyperopt 0.2.5.db1
- sparkdl 2.1.0.db4
Python biblioteca sobre clustering de CPU
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.11.0=pyhd3eb1b0_1
- aiohttp=3.6.3=py38h7b6447c_0
- asn1crypto=1.4.0=py_0
- astor=0.8.1=py38_0
- async-timeout=3.0.1=py38_0
- attrs=20.3.0=pyhd3eb1b0_0
- backcall=0.2.0=py_0
- bcrypt=3.2.0=py38h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py38_0
- boto3=1.16.7=pyhd3eb1b0_0
- botocore=1.19.7=pyhd3eb1b0_0
- brotlipy=0.7.0=py38h27cfd23_1003
- c-ares=1.17.1=h27cfd23_0
- ca-certificates=2021.4.13=h06a4308_1 # (updated from 2021.1.19 in May 26, 2021 maintenance update)
- cachetools=4.2.0=pyhd3eb1b0_0
- certifi=2020.12.5=py38h06a4308_0
- cffi=1.14.3=py38h261ae71_2
- chardet=3.0.4=py38h06a4308_1003
- click=7.1.2=pyhd3eb1b0_0
- cloudpickle=1.6.0=py_0
- configparser=5.0.1=py_0
- cpuonly=1.0=0
- cryptography=3.1.1=py38h1ba5d50_0
- cycler=0.10.0=py38_0
- cython=0.29.21=py38h2531618_0
- decorator=4.4.2=py_0
- dill=0.3.2=py_0
- docutils=0.15.2=py38_0
- entrypoints=0.3=py38_0
- flask=1.1.2=py_0
- freetype=2.10.4=h5ab3b9f_0
- future=0.18.2=py38_1
- gitdb=4.0.5=py_0
- gitpython=3.1.11=pyhd3eb1b0_1
- google-auth=1.22.1=py_0
- google-auth-oauthlib=0.4.2=pyhd3eb1b0_2
- google-pasta=0.2.0=py_0
- gunicorn=20.0.4=py38_0
- h5py=2.10.0=py38h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.10=pyhd3eb1b0_0
- importlib-metadata=2.0.0=py_1
- intel-openmp=2019.4=243
- ipykernel=5.3.4=py38h5ca1d4c_0
- ipython=7.19.0=py38hb070fc8_1
- ipython_genutils=0.2.0=pyhd3eb1b0_1
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py_0
- jedi=0.17.2=py38h06a4308_1
- jinja2=2.11.2=pyhd3eb1b0_0
- jmespath=0.10.0=py_0
- joblib=0.17.0=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=6.1.7=py_0
- jupyter_core=4.6.3=py38_0
- kiwisolver=1.3.0=py38h2531618_0
- krb5=1.17.1=h173b8e3_0
- lcms2=2.11=h396b838_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20191231=h14c3975_1
- libffi=3.3=he6710b0_2
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=12.2=h20c2e04_0
- libprotobuf=3.13.0.1=hd408876_0
- libsodium=1.0.18=h7b6447c_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_1
- lightgbm=3.1.1=py38h2531618_0
- lz4-c=1.9.2=heb0550a_3
- mako=1.1.3=py_0
- markdown=3.3.2=py38_0
- markupsafe=1.1.1=py38h7b6447c_0
- matplotlib-base=3.2.2=py38hef1b27d_0
- mkl=2019.4=243
- mkl-service=2.3.0=py38he904b0f_0
- mkl_fft=1.2.0=py38h23d657b_0
- mkl_random=1.1.0=py38h962f231_0
- more-itertools=8.6.0=pyhd3eb1b0_0
- multidict=4.7.6=py38h7b6447c_1
- ncurses=6.2=he6710b0_1
- networkx=2.5=py_0
- nltk=3.5=py_0
- numpy=1.19.2=py38h54aff64_0
- numpy-base=1.19.2=py38hfa32c7d_0
- oauthlib=3.1.0=py_0
- olefile=0.46=py_0
- openssl=1.1.1k=h27cfd23_0 # (updated from 1.1.1i in May 26, 2021 maintenance update)
- packaging=20.4=py_0
- pandas=1.1.3=py38he6710b0_0
- paramiko=2.7.2=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py38_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=8.0.1=py38he98fc37_0
- pip=20.2.4=py38h06a4308_0
- plotly=4.14.2=pyhd3eb1b0_0
- prompt-toolkit=3.0.8=py_0
- prompt_toolkit=3.0.8=0
- protobuf=3.13.0.1=py38he6710b0_1
- psutil=5.7.2=py38h7b6447c_0
- psycopg2=2.8.5=py38h3c74f83_1
- ptyprocess=0.6.0=pyhd3eb1b0_2
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.20=py_2
- pygments=2.7.2=pyhd3eb1b0_0
- pyjwt=1.7.1=py38_0
- pynacl=1.4.0=py38h7b6447c_1
- pyodbc=4.0.30=py38he6710b0_0
- pyopenssl=19.1.0=pyhd3eb1b0_1
- pyparsing=2.4.7=pyhd3eb1b0_0
- pysocks=1.7.1=py38h06a4308_0
- python=3.8.8=hdb3f193_4 # (updated from 3.8.5 in May 26, 2021 maintenance update)
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytz=2020.1=py_0
- pyzmq=19.0.2=py38he6710b0_1
- readline=8.0=h7b6447c_0
- regex=2020.10.15=py38h7b6447c_0
- requests=2.24.0=py_0
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py_2
- rsa=4.7=pyhd3eb1b0_1
- s3transfer=0.3.4=pyhd3eb1b0_0
- scikit-learn=0.23.2=py38h0573a6f_0
- scipy=1.5.2=py38h0b6359f_0
- setuptools=50.3.1=py38h06a4308_1
- simplejson=3.17.2=py38h7b6447c_0
- six=1.15.0=py38h06a4308_0
- smmap=3.0.4=py_0
- sqlite=3.33.0=h62c20be_0
- sqlparse=0.4.1=py_0
- statsmodels=0.12.0=py38h7b6447c_0
- tabulate=0.8.7=py38_0
- threadpoolctl=2.1.0=pyh5ca1d4c_0
- tk=8.6.10=hbc83047_0
- tornado=6.0.4=py38h7b6447c_1
- tqdm=4.50.2=py_0
- traitlets=5.0.5=py_0
- typing_extensions=3.7.4.3=py_0
- unixodbc=2.3.9=h7b6447c_0
- urllib3=1.25.11=py_0
- wcwidth=0.2.5=py_0
- websocket-client=0.57.0=py38_2
- werkzeug=1.0.1=py_0
- wheel=0.35.1=pyhd3eb1b0_0
- wrapt=1.12.1=py38h7b6447c_1
- xz=5.2.5=h7b6447c_0
- yarl=1.6.3=py38h27cfd23_0
- zeromq=4.3.3=he6710b0_3
- zipp=3.4.0=pyhd3eb1b0_0
- zlib=1.2.11=h7b6447c_3
- zstd=1.4.5=h9ceee32_0
- pip:
- astunparse==1.6.3
- azure-core==1.10.0
- azure-storage-blob==12.7.0
- databricks-cli==0.14.1
- diskcache==5.1.0
- docker==4.4.1
- flatbuffers==1.12
- gast==0.3.3
- grpcio==1.32.0
- horovod==0.21.1
- joblibspark==0.3.0
- keras-preprocessing==1.1.2
- koalas==1.5.0
- llvmlite==0.35.0
- mleap==0.16.1
- mlflow==1.13.1
- msrest==0.6.19
- numba==0.52.0
- opt-einsum==3.3.0
- petastorm==0.9.8
- pyarrow==1.0.1
- pyyaml==5.4
- querystring-parser==1.2.4
- seaborn==0.10.0
- shap==0.37.0
- slicer==0.0.3
- spark-tensorflow-distributor==0.1.0
- tensorboard==2.4.1
- tensorboard-plugin-wit==1.8.0
- tensorflow-cpu==2.4.0
- tensorflow-estimator==2.4.0
- termcolor==1.1.0
- torch==1.7.1
- torchvision==0.8.2
- xgboost==1.3.1
prefix: /databricks/conda/envs/databricks-ml
Spark pacote contendo os módulos Python
Spark pacote | Módulo Python | Versão |
---|---|---|
graphframes | graphframes | 0.8.1-db2-spark3.1 |
R biblioteca
A biblioteca R é idêntica à biblioteca R em Databricks Runtime 8.0.
Java e biblioteca ( 2.12 clustering) Scala Scala
Além de Java e Scala biblioteca em Databricks Runtime 8.0, Databricks Runtime 8.0 ML contém os seguintes JARs:
Agrupamento de CPU
ID do grupo | ID do artefato | Versão |
---|---|---|
com.typesafe.akka | também conhecido como actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0,17.0-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.3.1 |
ml.dmlc | xgboost4j_2,12 | 1.3.1 |
org.graphframes | graphframes_2.12 | 0.8.1-db2-spark3.1 |
org.mlflow | cliente mlflow | 1.13.1 |
org.mlflow | faísca de fluxo | 1.13.1 |
org.Scala-lang.modules | Scala-java8-compat_2.12 | 0,8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1,15.0 |